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Abstract—In many application scenarios, video quality assess-
ment is required to be fast and reasonably accurate. The charac-
terisation of objective algorithms by subjective assessment is well
established but limited due to the small number of test samples.
Verification using large-scale objectively annotated databases
provides a complementary solution. In this contribution, three
simple but fast measures are compared regarding their agreement
on a large-scale database. In contrast to subjective experiments,
not only sequence-wise but also framewise agreement can be
analyzed. Insight is gained into the behavior of the measures
with respect to 5952 different coding configurations of High
Efficiency Video Coding (HEVC). Consistency within a video
sequence is analyzed as well as across video sequences. The results
show that the occurrence of discrepancies depends mostly on the
configured coding structure and the source content. The detailed
observations stimulate questions on the combined usage of several
video quality measures for encoder optimization.

Index Terms—Video quality, Measure agreement, Large-scale
database

I. INTRODUCTION

Typical industrial video distribution chains may continu-
ously monitor the video quality at several processing steps,
at the camera capture, on the contribution channel to the
studio, for the distribution to the customer, and finally at the
customer side. In this work, the application focus would be on
those parts where a reference video is available for comparison
to a degraded video using Full-Reference (FR) video quality
measures and measurement needs to be performed in realtime,
potentially on low-performance network equipment. The ref-
erence video may either be available explicitly, for example
as input to an encoder step, or implicitly, for example using a
(camouflaged) test video during regular operation.

A huge number of FR algorithms have been developed
and are still in development by researchers in industry and
academia ranging from very low to very high computational
demands. The evaluation of these methods is usually per-
formed by comparing their prediction performance to ground
truth data obtained in subjective experiments, a typical ex-
ample being the validation experiments by the Video Quality
Experts Group (VQEG)[1] that led to several Recommen-
dations of the International Telecommunication Union (ITU-
T J.144, J.247, J.341). Performance evaluation by subjective
experiments may be seen as mandatory and thus necessary
but not sufficient due to the limited number of test cases with
respect to the abovementioned application scenario.

Automatic performance analysis only using objective mea-
surements provides a complementary approach. Two alterna-
tives shall be mentioned here. First, the creation of dedicated
test sequences in which the performance is expected to be
known a priori such as increasing strength of a distortion[2].
The second possibility is to create and evaluate successively
a large-scale database. This approach considers that it is not
feasible to test the whole database subjectively because it
contains an infinite number of potential video sequences. A
potential alternative to exhaustive subjective assessment is
to compare the agreement of a set of objective algorithms,
potentially followed by subjective evaluation of a subset.

Analysis methods and preliminary conclusions using such
agreement analysis were proposed by the authors for coding
and packet-loss scenarios [3], [4]. The analysis used either
pairwise comparisons or additional indicators that were fitted
either to improve coherence or to analyze the behavior of
the measures. Using the same type of analysis, this paper
proposes an evaluation of objective measurements that is
difficult to achieve in subjective assessment: Characterization
of single frame prediction performance in the context of a
video sequence. By framewise analysis, important insight may
be gained concerning the scope of application of a measure,
for example regarding suitable temporal pooling strategies, i.e.
required smoothing for outliers or rate-distortion applications.
In the latter case, different distortion measures may be con-
sidered in order to improve the smoothness of the perceived
video quality optimization. Due to the still limited size of the
current large-scale database and the selection of the objective
measures dictated by the available processing power, this study
focuses on presenting innovative analysis methods rather than
generalizable results.

The paper starts with a short summary of the database
and the objective measures in Section II. Then, two types of
analysis are shown as depicted in Fig. 1. The first, pairwise
ranking comparison of consecutive frames as a measure of
coherence is presented in Section III. The second is introduced
in Section IV in which different source videos and coding
parameters are framewise compared providing insight into in-
fluence of content and coding structure decisions on coherence.
A summary is provided in the conclusion Section V.
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Fig. 1: Illustrations for the two types of analysis that are demonstrated in this
paper.

II. LARGE-SCALE DATABASE DESCRIPTION

The HEVC large scale database [3], [5] is created from
10 source videos of 10 seconds long with a wide variation
including a cartoon, sports content, nature, and user generated
content. The original High Definition (1920x1080) sources
have also been downscaled to 1280x720 and 960x544 before
further processing by a Hypothetical Reference Circuit (HRC).

As HRCs, only compression has been considered using a
varied set of parameters. First of all, the bitrate has been fixed
using two constant bitrate techniques (frame based and coding
unit based at 0.5, 1, 2, 4, 8, and 16 Mbps) and quantization
parameter (QP) based (at QPs of 26, 32, 38, 46). Second,
the Group Of Pictures (GOP) size has been varied between
two (IBPBPBPBP) and eight (IBBBBBBBP) with one low
delay variation having a GOP size of four. Both open-GOP and
closed-GOP structures have been considered at intra periods of
8, 16, 32, and 64. Finally, the number of slices has been varied
(one, two, and four slices per picture) including a fixed slice
size version providing 1500 bytes per slice. In total, 59520
sequences have been produced in this way enabling a data
analysis approach on video compression behavior.

In this work, the strategy has been to start with a limited
set of sources and a large variety of compression parameters
or HRCs in order to keep processing feasible. In a later
phase, by identifying the most useful subset of HRCs an
extension of the number of sources is planned against this
restricted set of HRCs. From all these encoded sequences,
i.e., Processed Video Sequences (PVS), the frame based and
sequence average of Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM) [6], and Visual Information
Fidelity (VIFP) [7] have been calculated.

III. CONSISTENCY MEASURE ON CONSECUTIVE FRAMES

In this section, the continuity of agreements and
disagreements is analyzed within one HRC, i.e. within
one coding condition, for each source content.

Agreement =

{
1 |

∑
Q∈{PSNR,SSIM,V IFP} sign(Q(A)−Q(B)) |= 3

0 else

(1)
The continuity of agreements is measured in a sequential
manner as formally described in Eq. 1 and as illustrated in

Fig. 1 with solid arrows. Once the disagreement is happening
between frames (A and B), there is high probability that
frame B disagrees too with frames before A. For the given
large-scale database, there are 5952 HRCs for each 250-frame
source. Hence, a 5952x249 agreement/disagreement matrix is
calculated for each source. Then, for each of these sources,
the columns are summed and divided by the number of
HRCs. This type of analysis shows the temporal behavior
of different objective video quality metrics, namely PSNR,
SSIM, and VIFP. Fig. 2 shows the variations of the number
of disagreements over time for two source contents: source
number 6 and 10. The darker the bar for a particular frame,
the higher the fraction of disagreement between the frame
represented on the X-axis and its previous frame. It is difficult
to make general interpretations of the maxima from such an
overall analysis. A better strategy is to consider agreement
with respect to the different sources or coding conditions as
described in the following subsections as well as in Section
IV. On the other hand, what can already be observed in this
high-level analysis is that the highest number of agreement
(white peaks) are happening when agreement between video
quality measures is calculated between Intra-frames and their
successive/preceding Inter-frame. Further analysis of the data
reveals that this is because the Intra-frame has a notable higher
quality compared to next/previous Inter-frame from the qual-
ity measure point of view. The used encoder configurations
implies a higher quality to the Intra-frame compared to Inter-
frames such that all measures easily agree on which frame
is highest in quality. Thus, when measuring improvements of
newly proposed algorithm, it is advantageous to compare all
available objective measures with respect to the content in
order to provide a thorough analysis of the proposal.

A. The impact of content

When analyzing the data in more detail, the influence of
the content types and characteristics clearly appears. From the
data, it can be observed that the number of disagreement varies
from one content type to the other. In Fig. 3, the fraction of
disagreement for each quality measure is displayed. It can
be observed that the contribution of each quality measure
to the overall disagreement is very clear. The majority of
disagreement in SRC3 is due to PSNR, while the majority of
disagreements in SRC10 is due to SSIM, the figure is not pre-
sented here due to space limitations. From these observations,
it can be concluded that depending on the type of the source
content, PSNR, SSIM, and VIF can act differently. Thus, when
measuring improvements of algorithms, it is advantageous to
compare all available objective measures with respect to the
content in order to provide a thorough analysis.

B. The impact of Intraperiod

As mentioned in the high-level analysis, the Intraperiod
is a very important factor in understanding the temporal
behavior of the quality measures. Fig. 4 shows this effect. It
demonstrates the variation of disagreements of HRCs of SRC6.
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Fig. 2: The variations of the number of disagreements over time for two source
contents: source number 6 and 10.
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Fig. 3: The cause of disagreements in SRC3.

It is obvious that the disagreement fractions between Intra-
frames and next/previous frames is very low compared to other
frames. Similar observations can be made for all Intraperiods
( 8, 16, 32, and 64) and also for the other source contents. The
capability of the quality measures to agree when comparing
two frames of notable difference in quality is the main reason
for this phenomenon. Hence, when a source is encoded with
coding conditions that only differ in the Intraperiod, temporal
pooling strategies for calculating the video quality score may
be examined and this effect may be taken further into account.
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Fig. 4: The variation of disagreement fractions of HRCs with Intraperiod of
8, 16, 32, and 64 of SRC6.

C. The impact of GOP structure

Low-delay and the hierarchical structure of GOP configu-
rations are widely used in different application scenarios. In
this work, the consistency of quality measures is categorized to
show the role of hierarchical GOP structure with different sizes
and a low-delay configuration of size four. Fig. 5 shows this
role for SRC6. The number of disagreement in the low-delay
configuration is higher than the number in the hierarchical cod-
ing structures. This observation stands for all source contents
except for SRC3. This behavior of low-delay might be due
to the its configuration of using not only the previous frame
but also -5,-9, and -13 frames relative to the first frame of
the GOP. Moreover, in low-delay there is only one layer and
the quality of the inter-frames are very similar, which yields
a high inconsistency between the quality measurements.
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Fig. 5: The variation of disagreement fractions of HRCs with hierarchical
GOP of 2, 4, and 8 and the low delay of 4.

D. The impact of QP and rate control

An interesting observation can also be made for the impact
of using a constant quantization parameter or a rate control
configuration. Very low and very high disagreement fractions
periodically alternate at the beginning and the middle of the
GOP while this is not observed when rate control is used.
Fig. 6 shows this observation for SRC7. In this source, the
fraction of disagreements for some frames is higher than 50%
when constant QP is used while it is not the case for the rate
control option.
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Fig. 6: The variation of disagreement fractions of HRCs with constant QP
and rate control option.

IV. CONSISTENCY WITH RESPECT TO SOURCE CONTENT
AND CODING PARAMETERS

In this section the agreement of the measures is analyzed
across PVS, i.e. by considering two PVS at a time and
comparing their quality measure values for each single frame
(see the dashed arrows in Fig. 1). Consider, for instance, the
sequence-level values of each of those metrics for two different
PVSs. Two cases are possible: either all the measures agree
(Case Agree) on which PVS provides the best quality, or
they do not agree (Case Disagree). From this point, we only
consider Case Agree, and we investigate if such an agreement
at the overall sequence level corresponds to agreement for
single frames as well.

First, we observed that, for sequences for which the quality
is strongly different, typically there is agreement at the frame
level, i.e., comparing the measures for frames in the same
position in the two sequences yields to agreement among
the measures. However, when the quality difference is less
pronounced, even in Case Agree, for some frames in the se-
quence there is no agreement for frames in the same position.
For the purpose of this work we consider only sequences
for which the agreement holds for more than 90% of the
frames (Case Agree90). The rationale behind this choice is that
when a new coding and/or processing technique is proposed,
typically quality values for the overall sequence are presented
to show that the new technique is better than some reference.
In absence of further information, such form of presentation
typically creates the expectation that the improvement holds
for the large majority of the frames in the sequence. If this
is not the case, it might be a symptom of some temporal
irregularities that should be better investigated directly by the
proponents.

In the rest of the section, we will focus on Case Agree90
by investigating how the disagreement between corresponding
frames in different sequences is influenced by the coding pa-
rameters. By fixing the value of most of the coding parameters
described in Section II, we obtain a set of sequences from
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which we choose the Case Agree90 ones. The latter ones are
compared one against each other, yielding to N(N − 1)/2
comparisons when N sequences are considered.

As a first example, we consider the number of slices per
frame. Fig. 7 shows, for each frame position, the fraction of
frames in that position that disagree among all the performed
comparisons, and for which the reason of disagreement is the
PSNR. This operation is repeated for similar sets in which only
the number of slices per picture changes. It can be observed
that the number of frames and their temporal position is very
similar, therefore it seems that the number of slices does not
significantly affect the number of disagreement.
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4 sl/frame
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Fig. 7: Fraction of frames in disagreement for different number of slices per
frame. Fixed QP, GOP size 8, intra refresh 16, open GOP.

This method allows to intuitively see the difference and
their position for a few different conditions, however it is
impractical to perform large scale analysis. Therefore, instead
of visually comparing the behavior over time of the fraction
of disagreement, we propose to compute a similarity index,
i.e., the absolute value of the correlation coefficient. Such an
approach also allows to provide a quantitative measurement
of the similarity.

1 sl/frame 2 sl/frame 4 sl/frame 1500 B/slice
1 sl/frame 1.000 0.988 0.976 0.969
2 sl/frame 0.988 1.000 0.974 0.973
4 sl/frame 0.976 0.974 1.000 0.966

1500 B/slice 0.969 0.973 0.966 1.000

TABLE I: Correlation coefficient among the results of Fig. 7.

The previous figure can be compactly represented by the
data in Table I. To further improve the scalability of the
method, we represent such data using matrices with different
gray values, where the darker is the gray level, the higher
is the absolute correlation. Fig. 8 shows the same data of the
previous table in this form. The image is obviously symmetric
along the diagonal as the values in the table.

Fig. 8: Graphical representation of correlation coefficients shown in Table I.

We adopt this technique to analyze the influence of the
major coding parameters. When the correlation is close to

one, the parameter has almost no impact, whereas lower values
show much higher influence.

First, we consider the fixed quantization parameter (QP)
case, as done in most of the video coding works [8], and we
vary only one parameter at a time. When all combinations of
all the other coding parameters, including the source sequence,
are considered, instead of only a subset as in Fig. 8, results
are similar, as shown in the left part of Fig. 9.

Fig. 9: Correlation coefficients between the cases in which all but the slice
size parameter (left) and resolution (right) are varied.

Fig. 10: Correlation coefficients between the cases in which all but the GOP
size and intra refresh parameters are varied.

The same behavior happens for the open or closed GOP
parameter (not shown in figures, correlation equal to 0.906),
and partly for the resolution as in the right side of Fig. 9.

The more interesting parameters are the Intraperiod and the
GOP size. Significant variations can be observed, especially
when they are considered jointly as in Fig. 10. In particular,
it seems that when the GOP size is small and the intra period
is large, there might be a strong impact on the position of
disagreements, whereas with the largest GOP size the effect
is reduced. With the low-delay GOP configuration (LDGOP)
correlation is very high, meaning that the influence of the intra
refresh rate is much more reduced.

When the rate control algorithm of the HM test model
software [9] is used instead of the fixed QP parameter,
interesting observations can be made in the data, in particular
when they are represented as a function of the frame position
in the sequence. Fig. 11 is an example of such condition. The
two rows are almost equal since they only differ for the open
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Fig. 11: Fraction of frames in disagreement for different number of slices
per frame. HM rate control, LDGOP size 4, intra refresh 32. Note the peaks
(darker vertical lines) at multiple of 32 frames.
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Fig. 12: Fraction of frames in disagreement separated for each measure. HM
rate control, LDGOP size 4, intra refresh 32, open GOP.

or closed GOP parameter which, as previously stated, has very
little influence.

For instance, in the first part a high fraction of disagreement
is visible. This can be ascribed to the fact that an initial, fixed,
QP is used by the HM rate control algorithm, which then
quickly adapts to the requested bitrate.

Moreover, note the peaks which appear in correspondence
of the periodicity dictated by the intra refresh rate, i.e.,
when frames with I-type blocks only are inserted. By further
experiments we determined that this behavior is probably
due to the inclusion of some source sequences which seems
particularly difficult for the HM rate control when a frame
with I-type blocks is inserted.

This observation underlines the importance of performing
such types of analysis on a large database with multiple coding
parameters and several different content types. Although our
database is somehow limited in the latter aspect, nevertheless
such effects can already be observed.

Finally, we consider the fraction of disagreement by consid-
ering the same sets of comparisons but computing the fraction
of disagreement for all the three measures. Figure 12 shows
an example of the typical situation. While some behaviors
are common for all metrics, e.g., the initial frames and the
periodicity of the peaks, others seem to be peculiar of the
measures. However, the latter often have a lower intensity.

V. CONCLUSIONS

It may have been expected that disagreement between
several objective measures exists on a frame-level even if the
measures agree on a sequence level. However, the particular
patterns of this disagreement point to two important conclu-
sions. The first conclusion is that the usage of one single
measure may not be sufficient. In particular, it may be benefi-
cial to analyze the usage of several complementary algorithms
within the coding loop, i.e. for rate-distortion optimization.
In addition, it should be noted that performance bias may
occur when improvements are measured only objectively and
only using one single method, thus weakening such proposals.
The second conclusion is that the pronounced correlation be-
tween content characteristics and encoder parameter selection

encourages further analysis, for example with respect to the
efficiency of rate-control algorithms. Some coding factors are
almost not influential, whereas others have a strong impact,
suggesting that quality comparisons among sequences without
considering the detailed behavior of the quality over the
frames in the sequence itself could be strongly misleading.
While these results concern future developments of coding and
quality measurement algorithms, further work on the large-
scale database approach requires a significant extension of
the samples, both sequences and algorithm results, which
is currently limited by the computational resources and the
availability of implementations of objective measurement algo-
rithms. Methodical work on analysis methods using statistical
methods will continue towards the identification of particular
cases that require inclusion in subjective experiments and the
characterization of objective measures.
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