
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
The final publication is available at IEEE via: http://dx.doi.org/10.1109/ICMEW.2015.7169841

EXPLORING THE DELAY VERSUS QUALITY TRADEOFF IN REAL-TIME STREAMING

OF SCALABLE VIDEO FROM MOBILE DEVICES

Matti Siekkinen1, Alberto Barraja1,2, Jukka K. Nurminen1, Enrico Masala2

1 Department of Computer Science, School of Science, Aalto University, Finland
2 Control and Computer Engineering Department, Politecnico di Torino, Torino, Italy

matti.siekkinen@aalto.fi, alberto.barraja@polito.it, jukka.k.nurminen@aalto.fi, masala@polito.it

ABSTRACT

This work addresses the increasingly common case of a user

who wants to record a video with a mobile device and share

it in (near) real-time with other users in the Internet using

HTTP streaming. The proposed system builds on scalable

video coding (SVC) to provide some degrees of adaptation to

the users watching the video without the support of a costly

high-performance low-latency video transcoding server. At

the same time, the DASH standard is used to leverage the

scalable video for providing HTTP streaming adaptation to

users watching the video. The performance of several chunk

uploading strategies are investigated by simulations, evalu-

ating the tradeoff between several parameters such as video

quality, buffering rate, idle time, and the startup delay of the

clients. Finally, experimental results on a testbed confirm the

simulation results.

Index Terms— scalable video coding, DASH, mobile

video streaming, video upload, near real-time

1. INTRODUCTION

Recent years have witnessed a strong increase in mobile de-

vices such as smartphones and tablets with powerful video

acquisition capabilities. This allows real-time or near-real-

time mobile video capturing and sharing to become a reality.

However, the high variability of the wireless channel condi-

tions to upload the content makes such operation rather chal-

lenging. Additionally, the only ubiquitously supported pro-

tocol for communications, HTTP, is notoriously ill-suited for

multimedia communications. Fortunately, new video com-

munications standards based on HTTP, such as the Dynamic

Adaptive Streaming over HTTP (DASH) [1], can partially ad-

dress this issue. The DASH media player can adapt to the

various network conditions by appropriately choosing among

the multiple quality levels available on the server.

In this context, this work focuses on a scenario where a

user wants to share a live video captured by the mobile de-

vice through a standard HTTP web server. This could be the

case, for instance, of a user sharing a live event with friends

to allow them watching it in real-time. We assume that differ-

ent viewers have different preferences: some prefer very short

delay, while others appreciate high video quality.

We assume that the video is captured and encoded only

at the mobile device. No additional transcoding would be

done on the server side, which allows standard HTTP web

servers to be used for cost-effectiveness. In this context scal-

able video coding [2] is a reasonable choice allowing differ-

ent viewers consume videos with different qualities. At the

same time, encoding all the different versions of the video in

a format suitable for distribution using the DASH standard is

desirable since it does not require the server to perform pro-

cessing or adaptation that, instead, is directly performed by

the DASH clients according to their adaptation logic. One of

the most difficult challenges in the described scenario is to be

able to optimally choose, at each time instant, which segment

and layer should be uploaded to the server, given the current

channel conditions.

Other works addressed some of these issues. For in-

stance, the effectiveness of using SVC content for DASH

video streaming in analyzed in [3, 4]. Ibrahim et al. [5]

show how it is possible to optimize the performance of DASH

streaming of SVC content on high-delay links by using mul-

tiple TCP connections. For mobile video uploading Seo et

al. [6] present a system that can send video from a mobile

device to a server that performs transcoding and adaptation

for redistribution using DASH. Their work shows that a near

real-time system can be achieved only if the video resolution

is limited, otherwise the computational burden on the server

is a bottleneck. Andelin et al. [7] is the study closest to our

work, investigating layer selection algorithms for clients re-

ceiving DASH streaming of SVC content. However, unlike

our work, it focuses on video viewing assuming that the al-

ready encoded content in SVC format is available in full on

the server.

This work investigates the use of SVC and DASH (sec-

tion 2) for sharing videos captured with mobile devices. We

propose an SVC-based streaming system (section 3) and use it

to study alternative policies for segment and layer selection.

In particular, we analyze the tradeoff between video quality



© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
The final publication is available at IEEE via: http://dx.doi.org/10.1109/ICMEW.2015.7169841

and delay through simulations (sections 4 and 5) and through

measurements with an experimental testbed (section 6).

2. SCALABLE VIDEO CODING FOR DASH

A scalable video encoder allows to create an embedded bit-

stream that supports different quality-rate points. The embed-

ded bitstream is implemented by a layered structure contain-

ing a base layer, which corresponds to the lowest supported

quality and which can be decoded independently of the other

layers, and additional enhancement layers, which improve the

quality of the video but increase the required rate.

Different techniques exist to implement video scalability,

the most important ones being spatial, temporal and quality

(also named SNR) scalability [2]. In this work we focus on

the scalable extension of H.264/AVC, Scalable Video Coding

(SVC) [8], which supports all the above types of scalability.

For simplicity, we focus only on spatial scalability, but the

ideas underlying our approach can be extended to the other

two forms.

The main advantage of layered coding is that the embed-

ded bitstreams can be easily tailored to match the transmis-

sion resources, in particular the available bandwidth, by just

selecting some layers and dropping others, without the need

of transcoding or re-encoding the content.

The support for adaptation can be effectively exploited by

standards such as DASH. The MPEG DASH [1] standard-

izes a popular approach for delivering multimedia content

over Internet using HTTP-based streaming. DASH is adap-

tive and allows multiple quality levels to be made available

to the client. Moreover, the specification is flexible enough

to accommodate the support for describing and segmenting

resources encoded using a scalable codec.

3. PROPOSED SVC-BASED STREAMING SYSTEM

3.1. Overview

The proposed system works so that a mobile node captures

a video in real-time. When the upload process begin, a suit-

able Media Presentation Description (MPD) is prepared and

uploaded by the mobile node to the server. The MPD descrip-

tion is parametrized so that there is no need to update it once

every new resource becomes available on the server.

We would like to stress that, to achieve low latency, the

client already encodes chunks with a predetermined fixed du-

ration in time so that they can be made immediately available

to the DASH clients without further processing in the server.

This allows the mobile user to rely on any simple web hosting

service without any additional logic for multimedia process-

ing, keeping the cost of the system low but at the same time

making the system scalable in terms of number of users that

can connect.

One of the challenges in implementing such a system is to

optimally tune the configuration of all subsystems so that the

latency is minimized but the overhead does not significantly

impact on the performance. An important issue is how to han-

dle the bandwidth fluctuations that are typical of a wireless

channel, which is the main focus of this work. Other issues

include choosing the right DASH segment size which must

be small enough so that frequent scheduling decisions can be

taken by the uploader to minimize client latency, whereas too

short segments must be avoided due to the inefficiencies of

both the HTTP protocol and the coding process.

3.2. Uploading Strategies

As mentioned above, one of key elements of the system is

the scheduler that decides, at each upload opportunity, which

video segment should be uploaded. In fact, due to the vari-

ability of the channel bandwidth, it is not possible to proceed

with a simple sequential upload of the various layers of the

same segment otherwise the envisaged near real-time service,

that keeps latency limited for users that do not want to wait

for a better quality, cannot be achieved.

We explore the behavior of various different uploading

strategies that we divide into two groups: naive strategies

and adaptive strategies. The set of naive strategies upload

the chunks corresponding to the different layers of video seg-

ments in a predefined order regardless of how the throughput

fluctuates. If the next chunk scheduled for transmission has

not yet been generated, the uploader blocks until it is avail-

able.

The most basic naive strategies are horizontal and verti-

cal strategies. The horizontal one uploads all the base layer

segments in order after which is continues by uploading the

segments of the first enhancement layer in order and so on.

Therefore, it is characterized by its nature to minimize de-

lay before enhancing quality. In contrast, the vertical strategy

prioritizes quality before delay by uploading each layer of a

given video segment before moving on to upload the follow-

ing segment. In addition, we define diagonal strategies that

are characterized with a so called steepness parameter. These

strategies upload video segments so that the lower the layer,

the more chunks of that layer will have been uploaded at a

given point of time. The steepness parameter determines the

number of segments that a higher layer lags behind its im-

mediate lower layer. Its value is between zero and one, zero

being equivalent to the horizontal and one equivalent to the

vertical strategy. Pseudocode corresponding to these strate-

gies is presented in Algorithm 1.

Adaptive strategies, on the other hand, attempt to provide

minimal number of buffering events for all clients. Hence,

they strive to always deliver immediately the base layer chunk

of a newly generated video segment. This is accomplished

by adapting to bandwidth fluctuations: The uploader contin-

uously monitors the throughput and uploads a higher layer



© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
The final publication is available at IEEE via: http://dx.doi.org/10.1109/ICMEW.2015.7169841

Algorithm 1 Naive strategies

input: most recently generated segment number: nlast = 1;

input: current segment and layer numbers: ncur = 1; l = 0;

input: steepness s ∈ [0, 1];
repeat

upload chunk(l, nlast);
for all l ∈ enhancement layers do

ncur = get first segment not yet uploaded(l);
nprev = get last segment uploaded(l− 1);
while (ncur < nprev × s) do

upload chunk(l, ncur);
ncur = ncur + 1;

end while

end for

nlast = nlast + 1;

if needed, wait until segment nlast is available;

until stream ended and all chunks uploaded

chunk only if it estimates that there is enough time to do that

before the next video segment becomes available in order not

to jeopardize the real-time delivery of the base layer. The

estimate is computed based on the measured average upload

rate during the previous chunk upload. We define three dif-

ferent adaptive strategies based on how they prioritize the de-

livery of different layers: gradual, moderate, and steep. Their

names reflect how much the strategy allows higher layers to

lag behind the lower layers, similarly to the naive strategies.

Pseudocode corresponding to these strategies is presented in

Algorithm 2. Figure 1 visualizes the way they progress with

the uploading. After the period of low bandwidth when it

again increases the gradual strategy spends the excess time

after uploading each of the base layer chunks by filling up the

gaps in the the first enhancement layer. The moderate strat-

egy instead always uploads a chunk corresponding to a first

enhancement layer if excess time remains and only after that

uploads a segment corresponding to the enhancement layer

2. Finally, the steep strategy ensures that the lag between the

enhancement layers is at most one segment by filling up the

gaps on all those layers with the same priority.

4. SIMULATION SETUP

In order to quantify the delay vs. quality tradeoff in dif-

ferent scenarios, we simulated the behavior of the different

uploading strategies. We used real SVC-encoded video se-

Fig. 1. Chunk uploading order for the different strategies.

Algorithm 2 Adaptive strategies

input: most recently generated segment number: nlast = 1;

input: current segment and layer numbers: ncur = 1; l = 0;

input: time remaining until new segment: trem =segment length;

input: estimated upload time: test = 0;

input: measured upload rate and time: rul = 0; tul = 0;

repeat

tul, rul = upload chunk(l, ncur);
trem = trem − tul;

if (using gradual strategy) then

if (all layer l chunks uploaded) then

l = l + 1;

end if

else if (using moderate strategy) then

l = (l + 1)mod number of layers;

else if (using steep strategy) then

l = get lowest layer with fewest uploaded chunks()
end if

ncur = get first segment not yet uploaded(l);
test = predict next upload duration(l, ncur, rul);
if (test > trem) OR (all chunks till nlast uploaded) then

wait until segment nlast = nlast + 1 is available;

l = 0;

end if

until stream ended and all chunks uploaded

quence information as input to the simulations. In particu-

lar, we encoded the standard video sequences known as ice,

crew, city, harbour using, for the highest quality layer, 30

frames per second (fps) and 4CIF (704×576) resolution. We

believe these sequences may well represent content that is live

captured and transmitted to make it immediately available to

viewers. We employed spatial scalability with three layers

(base and two enhancements). The sequences are balanced

in terms of spatial details, since ice and crew present move-

ments but not so many tiny details, while the opposite holds

for the other two sequences. To perform encoding we resorted

to the JSVM encoding software v. 9.19.15. The encoding

has been configured for the DASH environment by creating

60-frame segments that can be decoded independently from

the previous and subsequent segment. Each segment employs

a single I frame at the beginning, followed by P frames ev-

ery 4 frames. Intermediate frames are hierarchically coded B

frames. The sequence is terminated by a P frame not to intro-

duce dependencies on the next segment. The same structure

is replicated for the two spatial enhancement layers. The lay-

ers have been encoded with a fixed quantization parameter in

order to achieve approximately 100 kbit/s, 350 kbit/s and 900

kbit/s for each of the three layers, respectively.

The standard video sequences are short, therefore to gen-

erate a sufficiently long video sequence we concatenated the

four sequences twice (ice, crew, city, harbour, ice, crew, city,

harbour), which yields a 64 s video. Table 1 reports the en-

coding PSNR for the various layers of each sequence. We

employed the first 240 frames of each sequence as this is the



© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
The final publication is available at IEEE via: http://dx.doi.org/10.1109/ICMEW.2015.7169841

Table 1. Encoding PSNR (dB) when an increasing number of

spatial layers is available.
Sequence Layer 1 Layer 2 Layer 3

ice 29.69 33.90 38.93

crew 28.36 31.29 33.86

city 24.81 27.40 32.88

harbour 22.32 26.05 29.11

size of the shortest sequence in the set (ice).

We experimented with two different channel bandwidth

profiles, generated by means of a three-state Markov chain

shown in Figure 2. Such models allow capturing the graceful

degradation and improvement of the channel capacity while

the user is mobile and of the available bandwidth when more

clients join to share the resources of the wireless network that

the user is connected to. The video is encoded in such a way

that the average bitrate of all the layers combined together is

slightly below the highest bandwidth level, while the average

bitrate of the base layer is slightly above the lowest bandwidth

level. Thus, we assume that the client has some knowledge of

how much the bandwidth typically varies when choosing the

encoding parameters. Hence, the absolute bandwidth values

used here are not as important as their relative values to the

bitrates of the video layers.

5. SIMULATION RESULTS

We study the behavior of different uploading strategies from

several perspectives. First, we look at the performance trade-

offs with naive strategies. After that, we investigate what can

be achieved through strategies that adapt to bandwidth vari-

ations. We also look at the impact of tuning the adaptation

parameters. Finally, we examine the impact of splitting the

video chunks into smaller pieces for transmission. All the re-

sults are evaluated as a function of different startup delays,

which can be considered the willingness of the client to wait

(i.e., be farther from real-time) in order to get better quality.

5.1. Naive Strategies

We summarize the different performance metrics in Table 2.

The numbers indicate averages over a range of startup delays

starting from zero and going up to 100 s. The buffering ratio

(a) good network conditions (b) poor network conditions

Fig. 2. Markov chain models for modeling wireless channel

bandwidth fluctuations of a mobile access network.

Table 2. Main performance metrics for different non-adaptive

strategies averaged over a startup delay range of 0-100 s.

strategy

good network poor network

buf idle buf idle

layer ratio ratio layer ratio ratio

vertical 2.61 0.07 0.03 2.02 0.53 0.03

horizontal 1.75 0 0.79 1.49 0 0.51

diagonal (s=0.3) 2.12 0.01 0.40 1.80 0.04 0.20

diagonal (s=0.6) 2.33 0.03 0.24 1.88 0.21 0.12

diagonal (s=0.9) 2.54 0.05 0.10 1.99 0.40 0.06

(buf ratio) is the time interval for which data is missing at the

client (buffering event) due to unlucky scheduling decisions

and the idle ratio is the amount of time in which the upload

strategy suggests to wait. Both are normalized over the whole

sequence duration. The horizontal strategy is clearly overly

cautious leading to a large amount of time spent waiting for

the next base layer segment. Conversely, the vertical strat-

egy leads to a high average playback quality but suffers from

relatively large amount of buffering time. The effects are em-

phasized when the network conditions are poor. The diagonal

strategies seem to strike a tradeoff between these two extreme

strategies, which agrees with intuition.

Let us take a closer look at some of the performance met-

rics. Figure 3 visualizes the delay vs. quality tradeoff with

non-adaptive strategies in terms of average layer played and

average PSNR of the resulting video as a function of startup

delay. We make two main observations. First, the PSNR qual-

ity indicator varies in the exact same manner as the average

layer played. This is because there is little difference in the

sizes of different segments of a given layer. Therefore, each

chunk of a given layer carries roughly similar amount of in-

formation and makes a similar magnitude enhancement to the

overall video quality. For this reason, we use the average layer

played as a good indicator of the resulting video quality in

the rest of the paper. Second, we confirm that the diagonal

strategies indeed strike a tradeoff between the horizontal and

vertical ones. Furthermore, the steeper the strategy, the closer

the strategy is to the vertical one.

5.2. Avoiding Buffering with Bandwidth Adaptation

We now turn our attention to the results obtained with the

bandwidth adaptive strategies. We summarize again the main

performance metrics in Table 3 for the two adaptive strategies.

startup delay
0 50 100

a
v
g

 l
a

y
e

r 
p

la
y
e

d

1

1.5

2

2.5

3

pure vertical
pure horizontal
diagonal (0.3)
diagonal (0.6)
diagonal (0.9)

(a) avg layer played

startup delay
0 50 100

a
v
g

 P
S

N
R

26

28

30

32

34

(b) avg PSNR

Fig. 3. Average video quality as a function of startup delay in

good network conditions.



© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
The final publication is available at IEEE via: http://dx.doi.org/10.1109/ICMEW.2015.7169841

Table 3. Main performance metrics for different adaptive

strategies averaged over a startup delay range of 0-100 s.

strategy

good network poor network

buf idle buf idle

layer ratio ratio layer ratio ratio

vertical 2.61 0.07 0.03 2.02 0.53 0.03

horizontal 1.75 0 0.79 1.49 0 0.51

gradual 2.52 0 0.18 2.07 0 0.16

moderate 2.52 0 0.18 1.92 0 0.18

steep 2.31 0 0.43 1.66 0 0.34

We list also here the vertical and horizontal strategies for ease

of comparison. The bandwidth adaptive strategies, by design,

reduce the buffering time to zero in all simulated scenarios,

which indicates that any mistakes made in bandwidth estima-

tion are not critical enough to lead to delay in delivery of a

base layer segment.

Figure 4 plots the average quality vs. delay for the two

different network conditions. We notice that the gradual strat-

egy allows delivering the lower layers faster than the other

strategies, while using the steep strategy in good network con-

ditions makes it possible to play all three layers non-stop with

a shorter startup delay than when using the other adaptive

strategies but only by a small margin. In this scenario, the

behavior of moderate strategy is exactly the same as the be-

havior of the gradual strategy and the curves completely over-

lap. In poor network conditions, the moderate strategy strikes

a quality tradeoff between the steep and gradual ones. While

the vertical strategy yields shortest delay in delivering all the

three layers, it risks causing buffering events.

5.3. Relaxing the Real-time Requirements

The default behavior of an adaptive strategy when making a

decision concerning whether to upload a missing enhance-

ment layer chunk is to compare the remaining time available

until the next base layer chunk is available to the estimated

upload time of the enhancement layer chunk under consider-

ation. This behavior tries to ensure that each base layer chunk

is delivered without any additional delay.

We wanted to check how much we could gain in terms

of playback quality by relaxing this requirement. Hence, we

startup delay
0 50 100

a
v
g

 l
a

y
e

r 
p

la
y
e

d

1

1.5

2

2.5

3

pure vertical
pure horizontal
gradual diagonal
moderate diagonal
steep diagonal

(a) good network conditions

startup delay
0 50 100

a
v
g

 l
a

y
e

r 
p

la
y
e

d

1

1.5

2

2.5

3

(b) poor network conditions

Fig. 4. Average layer played as a function of startup delay

with bandwidth adaptive strategies.

slack time
0 5 10

a
v
g

 l
a

y
e

r 
p

la
y
e

d

1.6

1.7

1.8

1.9

2

2.1

2.2

gradual diagonal
moderate diagonal
steep diagonal

(a) avg layer played

startup delay (s)

6 
4 

2 
0 

2 
4 

slack time (s)

6 
8 

10

0.3

0.2

0.1

0

b
u

ff
e

ri
n

g
 r

a
ti
o

(b) buffering ratio

Fig. 5. Impact of slack time parameter on the quality of expe-

rience. Average layer played is over a range of startup delays

(0-100 s).

changed the default behavior by adding a parameter, called

slack time, that is added to the remaining time before it is

compared to the required upload time. Hence, the larger the

slack time, the more delay we allow for the base layer deliv-

ery.

We plot the results in Figure 5(a) only with the poor net-

work conditions, as the results with good network conditions

are similar. At first, the average playback quality increases

with the slack time but once the slack time grows beyond 3

s, there is no longer visible improvements. Note that here we

have considered the overall playback quality for clients within

the entire 0-100 s startup delay range. Hence, while a longer

slack time value improves playback quality for clients that

have a startup delay that is similar or longer than the slack

time, it also worsens the quality for those clients having a

shorter startup delay. The initial overall playback quality im-

provement with short slack time values is caused by reduced

idle time for the uploading client.

The effect of the slack time parameter is more striking

on buffering ratio. Figure 5(b) shows how it changes with

the slack time parameter for clients having different startup

delays. We only plot one set of results since the impact on

buffering ratio is similar for all the adaptive strategies. The

shorter the startup delay of the client, the more it suffers from

buffering events when the slack time parameter is increased.

The clients with a startup delay at least 1.5 s longer than the

slack parameter experience no buffering events.

5.4. Impact of video chunking

If the video is divided into large chunks, each chunk takes

potentially a long time to deliver and the probability of the

bandwidth to change during the upload is greater than in the

case of video divided into small chunks. Furthermore, large

chunks lead to potentially large amount of idle time because

the uploader determines that it cannot upload the whole en-

hanced layer chunk before a new base layer chunk is avail-

able. Therefore, the larger the chunk, the less efficiently the

available bandwidth is utilized by the adaptive uploader.

To quantify the above phenomenon, we simulated scenar-



© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
The final publication is available at IEEE via: http://dx.doi.org/10.1109/ICMEW.2015.7169841

startup delay
0 50 100

a
v
g

 l
a

y
e

r 
p

la
y
e

d

1

1.5

2

2.5

3

pure vertical
pure horizontal
gradual diagonal
moderate diagonal

(a) good network conditions

startup delay
0 50 100

a
v
g

 l
a

y
e

r 
p

la
y
e

d

1

1.5

2

2.5

3

(b) poor network conditions

Fig. 6. Average layer played as a function of startup delay

with testbed experiments.

ios where the 2 s video chunk is delivered in smaller frag-

ments. Due to space constraints, we only mention the main

takeaway: Delivering the video chunk in three fragments in-

creases the average layer played by roughly 0.2 units at most

(mean layer played of clients with 0-100 s startup delay) and

dividing video chunks to even smaller fragments no longer

improves the quality substantially. Such chunking could be

easily achieved through HTTP-layer mechanisms, for exam-

ple.

6. EXPERIMENTAL RESULTS

In order to understand whether our simulations capture all rel-

evant phenomena, we also setup a testbed to perform experi-

ments with the proposed techniques. The testbed is composed

of a transmitter, running on a Linux PC, an emulated wire-

less link, a server that collects the uploaded HTTP segments,

and clients that connect to the server to download the con-

tent. The wireless link was emulated by using the tc traffic

shaper. The client uploads each video chunk by sending an

HTTP POST requests on a web server. We implemented the

vertical and horizontal strategies and gradual and moderate

adaptive strategies.

We plot the results in Figure 6. The results match rather

well those obtained through simulations when the network

conditions are good. There are some discrepancies which

are due to the fact that the client uses TCP whose through-

put typically remains slightly below the available bandwidth

and takes a few RTT rounds to ramp up, whereas in the sim-

ulations we assumed that the client can use all the bandwidth

immediately from the beginning of a transfer of each chunk.

However, the results with the poor network conditions de-

viate substantially from the simulation results. The reason

turns out to be TCP retransmissions which slow down the

transmissions with the poor network conditions. The cause

for the retransmissions is the relatively large changes in band-

width that delay some packets so that the TCP retransmission

timeout expires causing spurious retransmissions and drastic

reduction in the TCP congestion window size. The deterio-

rating impact of such challenging network conditions on TCP

performance is known to the community and various mecha-

nisms to mitigate it have been proposed [9].

7. CONCLUSIONS

This paper presented a study of uploading SVC-encoded

video chunks from a mobile device to a web server that makes

them available for HTTP streaming using the DASH stan-

dard. We designed a number of different upload strategies

using which we explored the inherent delay vs. quality trade-

off. The results show that by appropriately tuning the strategy,

i.e. the prioritization between different layers, it is possible to

optimize the quality given delay constraints for a number of

different clients or, alternatively, optimize the delay given a

set of quality constraints.

8. REFERENCES

[1] ISO/IEC 23009, “Dynamic adaptive streaming over

HTTP (DASH),” 2012.

[2] J.-R. Ohm, “Advances in scalable video coding,” Pro-

ceedings of the IEEE, vol. 93, no. 1, pp. 42–56, 2005.

[3] Y. Sanchez, T. Schierl, C. Hellge, T. Wiegand, D. Hong,

D. De Vleeschauwer, W. Van Leekwijck, and Y. Le

Louedec, “iDASH: improved dynamic adaptive stream-

ing over HTTP using scalable video coding,” in Proceed-

ings of the 2nd ACM conference on Multimedia systems,

San Jose, CA, USA, Feb. 2011, pp. 257–264.

[4] Y. Sanchez, T. Schierl, C. Hellge, T. Wiegand, D. Hong,

D. De Vleeschauwer, W. Van Leekwijck, and Y. Le

Louedec, “Efficient HTTP-based streaming using scal-

able video coding,” Signal Processing: Image Communi-

cation, vol. 27, no. 4, pp. 329–342, 2012.

[5] S. Ibrahim, A. H. Zahran, and M. H. Ismail, “SVC-

DASH-M: Scalable video coding dynamic adaptive

streaming over HTTP using multiple connections,” in

IEEE 21st International Conference on Telecommunica-

tions (ICT), Lisbon, Portugal, May 2014, pp. 400–404.

[6] B. Seo, W. Cui, and R. Zimmermann, “An experimental

study of video uploading from mobile devices with HTTP

streaming,” in Proceedings of the 3rd ACM Multimedia

Systems Conference, Chapel Hill, NC, USA, Feb. 2012,

pp. 215–225.

[7] T. Andelin, V. Chetty, D. Harbaugh, S. Warnick, and

D. Zappala, “Quality selection for dynamic adaptive

streaming over HTTP with scalable video coding,” in

Proceedings of the 3rd ACM Multimedia Systems Confer-

ence, Chapel Hill, NC, USA, Feb. 2012, pp. 149–154.

[8] ISO/IEC 14496-10 & ITU-T H.264, “Annex G extension

of the H.264/MPEG-4 AVC,” Nov. 2007.

[9] M. C. Chan and R. Ramjee, “TCP/IP performance over

3G wireless links with rate and delay variation,” Wireless

Networks, vol. 11, no. 1-2, pp. 81–97, 2005.


