
The network neutrality bot architecture: a
preliminary approach for self-monitoring of Internet

access QoS
Simone Basso∗, Antonio Servetti†, Juan Carlos De Martin∗

∗NEXA Center for Internet & Society
Dipartimento di Automatica e Informatica

Politecnico di Torino
†Dipartimento di Automatica e Informatica

Politecnico di Torino

Abstract—The “network neutrality bot” (Neubot) is an evolv-
ing software architecture for distributed Internet access qual-
ity and network neutrality measurements. The core of this
architecture is an open-source agent that ordinary users may
install on their computers to gain a deeper understanding of
their Internet connections. The agent periodically monitors the
quality of service provided to the user, running background
active transmission tests that emulate different application-level
protocols. The results are then collected on a central server and
made publicly available to allow constant monitoring of the state
of the Internet by interested parties.

In this article we describe how we enhanced Neubot architec-
ture both to deploy a distributed broadband speed test and to
allow the development of plug-in transmission tests. In addition,
we start a preliminary discussion on the results we have collected
in the first three months after the first public release of the
software.

I. INTRODUCTION

The debate on “network neutrality” is becoming a more and
more relevant topic in economic, technical and even political
environments [1]. The basic question is whether network
operators should be allowed to differentiate the Internet traffic
that goes through their infrastructure or whether network
neutrality should be explicitly safeguarded by the law, thereby
enshrining what has been a characteristic of the Internet since
its birth.

The ability to block or slow down the traffic, which can be
used to prevent the spreading of spam, viruses, botnets, and
other malwares, can also be used by Internet Service Providers
to implement very questionable policies [2]. Apart from the so-
called “Great Firewall of China” and other censorship efforts,
which are beyond the scope of this paper, differentiating
technologies can also be employed to throttle: (i) the “seeding”
file-sharing traffic that flows out of ISPs networks (traffic
considered “bad” because often providers are charged per-
Megabyte for the traffic exchanged with their upstream Inter-
net Providers), (ii) the file-sharing traffic generated during rush
hours (in an effort to avoid the collapse of under-provisioned
access networks), (iii) the traffic of some “over-the-top”
(OTT), possibly free, services that compete with “managed
services” that an ISP sells (for example Skype competing with

ISP own Voice-over-IP solution). In particular, the conflict
between managed and OTT services, e.g. YouTube, Skype,
is becoming more and more relevant (particularly in the US).
Providers (a) have started to offer additional managed services
along with the Internet connection, such as television, video,
and voice communication, and (b) often employ differentiating
technologies, and other practices such as bandwidth caps, to
guarantee that there is always enough bandwidth to carry the
managed services (while OTT services get the traditional “best
effort” treatment) [3].

Technically, with the advent of “deep packet inspection” and
other classification technologies, network differentiation is a
two-step process. Filtering is performed to classify packets at
the edge of the Provider’s network. Then, inside the network,
packets receive the service level associated with their class. In
particular, packets that belong to low priority classes might be:
(i) diverted on slower and/or more congested “virtual links”,
with traffic engineering technologies like MPLS (Multiproto-
col Label Switching), (ii) dropped from the router queues in
cases of congestion, (iii) scheduled for forwarding after higher
priority packets.

Despite the potential impact of packet filtering, users, devel-
opers, and most other network administrators are not provided
with enough information regarding these practices, and there
are no well-established tools to assess whether a particular
kind of discrimination is active on a given connection. As a
consequence, we are designing Neubot as a software archi-
tecture for distributed network measurements [4] on which
developers can implement tools and methodologies that will
help examining ISPs throttling of Internet traffic depending
on the protocol used and service offered. In addition, Neubot
results will be made publicly available at neubot.org [5]
for further analysis by the research community, and to inform
the international debate on network neutrality with real, per-
host, network measurements.

The rest of this paper is organized as follows. In section II,
we introduce the architecture and we describe the proposed
measurement techniques. In section III, we describe the imple-
mentation of our broadband speed test and the enhancements

that allow plug-in transmission tests. In section IV, we start a
preliminary discussion of the collected results. In section V,
we compare Neubot with related work. Finally, conclusions
are drawn in section VI.

II. ARCHITECTURE

The architecture of Neubot consists of an agent that vol-
unteer end-users shall install on their computers, and a set of
servers. There is a master server, master.neubot.org,
that coordinates the tests and collects the results. And there
are test servers that implement one or more transmission tests.

The agent runs in background. Under Linux, BSD, and other
Unixes the agent is started at boot time, becomes a daemon,
and drops root privileges, running on behalf of the restricted
user _neubot. Under Windows the agent is started when a
user logs in, and runs in the context of her session.

The agent listens on port 9774 of the local host and
implements a JSON API. The user can control the agent using
a web user interface, based on this API, that also allows to
review recent results. Given the flexibility of the JSON API,
other interfaces are possible.

The agent automatically performs a set of transmission tests
between the Neubot computer and one or more test servers
(client-server mode), and between the Neubot computer and
other Neubots (peer-to-peer mode). Periodically, test results
are archived, sending them back to the master server.

A. Client-server test description
The diagram in Fig. 1 shows the sequence diagram and

components involved in a generic test. The Database and
Coordinator components are installed on the master server.
In the case of a client-server test, the TestNegotiator and Test-
Provider are installed on a test server. Note that it’s possible
for the master server and the test server to be the same physical
(or virtual) machine, for simplicity and maintainability. Each
component plays a well-defined role, as explained below.

The Coordinator keeps track of all the available test servers
and test peers – i.e. agents running in peer to peer mode and
accepting connections, as explained in section II-B – and binds
an agent that wants to perform a test with the test server (or
test peer) implementing such test.

The TestNegotiator assigns a temporary unique identifier to
each connecting agent that wants to perform a transmission
test, and manages the queue of incoming tests, to make sure
that tests are always well provisioned. At the end of the test,
the TestNegotiator collects and stores the test results on the
local database.

The TestProvider is the component that uses a given pro-
tocol to implement a certain transmission test to estimate
selected characteristics of the network between the agent and
the TestProvider itself. Note that we present the TestNegotiator
and the TestProvider separately, because they are different
components, but, in the current source tree, they are always
implemented together, for the sake of simplicity.

The Database is the component that collects all the results
of all the tests that have been performed. This could either be
a single server or, possibly, a set of distributed servers.

Fig. 1. Sequence diagram of a generic test.

At the beginning, the Coordinator knows in advance a list
of well-known test servers. So, when an agent connects (1) to
get the address of a test server, the Connector could return a
list of one or more addresses. The fact that the Coordinator
populates the list of tests allows for very flexible probing,
because different tests could be returned depending on the
circumstances.

Given the address of a TestNegotiator, the agent negotiates
the permission to perform the test (2a), possibly proposing
certain test parameters. The negotiator assigns the agent a
random and unique identifier, informs the agent on its position
in queue, and possibly returns the negotiated parameters.
When the TestProvider load allows to unblock the client (2b),
the TestNegotiator informs the client that now it can perform
the transmission test, and starts a per-test timer. If such timer
expires, the negotiator assumes that the test is taking too long,
possibly because the agent computer was shut down, and the
temporary unique identifier is removed from the white list1.

Then there is the transmission test between the agent and the
TestProvider (3). The measured performance metrics depends
on the target protocol, but always include the hosting computer
load, i.e. network, CPU, and memory usage. An HTTP test
inspired by Speedtest.net test [6] is already implemented.
We are working on a BitTorrent test inspired by Glasnost
[7]. Other target protocols include RTP, the IETF Real-Time
Transport Protocol, used by many Internet-based multimedia
applications, and Skype’s proprietary peer-to-peer Voice-over-
IP protocol.

Once the test is completed, the agent uploads the results (4)
to the TestNegotiator. The latter, in turn, stops the per-client
timer and saves results in the local database. When a signif-
icant batch of results has been collected, the TestNegotiator
will upload it upstream to the master Database (5).

Finally, the agent goes idle for a long amount of time (at
least fifteen minutes) before repeating again the procedure
explained above.

B. Peer-to-peer test description
In future, it will be possible for Neubot agents to listen

for incoming connections and implement the “server side”

1Of course, the TestProvider aborts the connection if the connecting agent
is not in the white list.

of a test, i.e. the TestNegotiator and the TestProvider. The
difference is that, when an agent performs the rendezvous
(1), it registers with the Coordinator as a listener rather than
as a connector for a given protocol. The Coordinator would
then check whether the agent is not firewalled, and, if the
check succeeds, it will add the agent Internet address to its
list of available test negotiators and providers. The remainder
of the procedure is exactly as in the client-server test, with the
notable difference that now the connecting agent connects to
another agent and not to an ad-hoc test server.

III. IMPLEMENTATION

In this section we provide more details regarding Neubot
modules, discuss briefly how the implemented tests works,
and describe the deployment of Neubot. This discussion builds
on the more generic explanation of the required modules,
available in our previous work [8].

A. Modules

Neubot consists of: (i) an executable startup script, written
in Python, or, under Windows, a PE/COFF executable, frozen
using py2exe [9]; (ii) a library of modules, written for Python
2.5-2.7, implementing the agent and the server; (iii) a web
user interface written in Javascript using jQuery [10]; and
(iv) a Gtk+ status icon written in PyGtk [11], available under
GNU/Linux, and other Unixes.

The design of Neubot is module oriented. Most Neubot
modules export a function, named main, that parses command
line options and implements some behavior. The startup script
acts like a switch. It maps the first command line option to
the related module and then dispatches the control to this
module. So, depending on the first command line option, the
startup script might start the Neubot agent in background,
run a background process that hosts any of the server side
components described in section II-A, run a given test from
command line, open the web user interface in the default
browser, or show the status icon in the notification area.

New tests could be added as plugins. For example, the dia-
gram in Fig. 2 shows the dependencies of a new hypothetical
transmission test named proto. These dependencies are: (i) the
protocol stream, on top of Neubot generic stream module; (ii)
the protocol test itself, depending on the marshal module as
well as on (i); (iii) a set of javascript protocol helpers for the
web user interface to represent the results and manage the test
parameters.

The http stream module, used to implement the transmission
test described in section III-B, is also employed to send the
“Neubot to Neubot” messages that implement the rendezvous,
negotiate, and collect transactions described in section II-A.
Such messages are encoded in (and decoded from) either
JSON or XML using the services provided by the marshal
module.

We now describe in detail the streams, marshal, and lib-
neubot.js modules of the Neubot library.

Fig. 2. This figure shows the dependencies of a new hypothetical transmission
test module named proto.

1) Streams: This module is built on-top of “asynchronous
event-based I/O”, implemented using select(). We use this
I/O strategy because it allows to handle multiple concurrent
small XML or JSON “Neubot to Neubot” messages without
consuming too much resources and because it enables better
performances. In particular, there is little overhead in receiving
many small messages – we don’t need to spawn extra pro-
cesses or threads, or manage thread pools – and the process
should never block waiting for I/O to complete.

This module provides consumer modules several facilities,
such as support for: scrambling messages using the RC4 im-
plementation provided by PyCrypto [12]; full encryption and
authentication using the Secure Socket Layer API available
since Python 2.6 [13]; support for enabling “time to connect”
and throughput measurements, eventually creating groups of
connections.

In addition, this module enforces a strict event model for
implementing protocols on top of the generic stream. Such a
model is inspired by the “protocol” model of Twisted [14] and,
to some extent, by the “handler” model of BitTorrent mainline
[15]. This simplifies the task of writing new transmission tests
for Neubot.

2) Marshal: The marshal module provides mechanisms to
marshal and unmarshal simple classes, i.e. classes that contains
just simple types – integers, (unicode) strings, floating point
numbers – as well as vector and/or dictionaries of simple types.
This is almost automatic with simplejson [16], while for XML
we have written wrappers around Python Document Object
Model (DOM) that perform this task.

This module also implements helper code to generate the
queries to create per-test tables and to save data, given both
the name of the table and a prototype of the object that should
be saved into the table. This simplifies the task of writing new
transmission tests for Neubot.

3) libneubot.js: This module is a collection of helpers and
wrappers to retrieve data using the “Neubot web api”, i.e. the
JSON-based API to query the local Neubot daemon from the
web interface, or from other clients, such as the Gtk+ status
icon.

B. Speedtest

This transmission test is inspired by the online test available
at Speedtest.net [6]. Here we don’t describe the negotiate and
collect transactions, because they have already been described
in section II-A, and we just focus on the test.

This test employs two connections to increase throughput
with moderately congested long fat networks. We decided
to use two connections even if in literature it’s common to
suggest to use four connections (see Tierney [17]) because
our goal is not to maximize the throughput at the expense of
other connections but rather to get an estimate of the available
bandwidth.

We are now going to discuss the three steps that compose
this test: the evaluation of the round-trip time latency, and the
estimation of the bandwidth available in the downstream and
upstream paths.

1) Latency: The first step consists in the evaluation of the
round-trip time (RTT) latency between the Neubot agent and
the server. We implement two techniques to do that: (i) “time
to connect” that estimates the round-trip time using the time
required for connect() to complete; and (ii) “short HTTP
transaction” that estimates the RTT using the time elapsed
between sending a small HEAD request, and receiving the
response – which, per RFC2616 [18], should consist of headers
only. The former technique collects a sample per connection,
while the latter allows to collect an arbitrary number of
samples per connection. The former technique should yield
a better estimate because it has no application-level overhead,
given that the three-way handshake is entirely performed by
the operating system kernel.

2) Download: The second step consists in the estimation
of the available downstream bandwidth. To do that, it requests
a portion of an huge resource and doubles the portion size
until the download takes a significant amount of time2. The
current implementation gives up when the test takes more than
a second to complete – not to disrupt the user experience
for too much time. We are refining the code to tune the
download interval so that it spans an integral amount of round-
trip times. Another forthcoming enhancement is to auto tune
the TCP buffer, given the estimated RTT and the bandwidth
we expect, either from guessing or by inspecting the download
history. These adjustment should make the test more robust for
connections with very high bandwidth-delay product.

3) Upload: The third step is similar to the second one, but it
targets the upstream bandwidth. This step uses POST, doubling
the uploaded portion size until it takes more than one second.
The content we push upstream is a portion of the data that has
been downloaded during step two (the assumption is that the
upstream speed will not be greater than the downstream one).

C. Deployment
We deployed our main test server at Torino-Piemonte Inter-

net eXchange (TOP-IX), the nearest Internet eXchange (IX)
to our campus, on a 1 GByte / 2 GHz / 1 core Debian 5.0
virtual machine, attached to a 1 Gbit/s upstream/downstream
pipe. We decided to deploy Neubot in the network of an IX in
order to minimize the “distance” between the installed Neubot
agents and our main server.

The virtual machine at TOP-IX runs a rendezvous and a
speedtest server, using two different processes, to allow to

2We use HTTP Range header to implement that.

reload the list of known speedtest servers without stopping the
local speedtest server instance. Indeed, in a couple of cases,
we added one more speedtest server, located at Politecnico di
Torino, for the purpose of redirecting there half of the traffic,
to test experimental algorithms.

IV. PRELIMINARY RESULTS

In this section we present some preliminary results of the
speedtest test, extracted from our database that contains tests
since October, 3rd 2010 until January, 17th 2011, counting up
to 448317 tests and 1115 unique agents.

We focus on download speed because broadband connec-
tions are nearly always advertised “up to” a certain download
speed. Therefore, we are interested to study the difference
between the advertised speed and the measured speed when
downloading from a well-known nearby location in the net-
work (in our case, the server at TOP-IX).

We identify a reasonable goodset of the collected results,
show the distribution of download speed in that set, compute
the average speed and compare it with the one reported by
Speedtest.net [6] and Youtube [19]. Then, we select a Neubot
agent and we show the download speed distribution of the tests
performed by such agent. The agent choice is not random.
We choose an agent whose results are consistently within the
goodset.

In the goodset, we consider only tests where the measured
download speed was lower than 20 Mbit/s and the estimated
RTT latency3 was lower than 100 ms. Overall, this goodset
includes up to 338615 tests, i.e. 75% of the total number of
tests. And the tests in the goodset have been performed by
1035 distinct agent identifiers (94% of the total).

The restriction on the download speed is to single out tests
performed from ADSL connections. There were many high
speed results due to tests originating from our campus or
from TOP-IX, and the best rated download speed for consumer
ADSL in Italy is indeed 20 Mbit/s.

The restriction on the RTT latency removes results collected
from locations “too far away” from our server at TOP-IX,
where the outcomes are less significant, mainly due to high
bandwidth-delay product, and possibly due to the presence of
cross traffic and congestion.

A. Aggregate download speed distribution

The plot in Fig. 3 shows the download speed distribution
of a goodset of the collected results. From the analysis of this
data, we clearly see peaks before 1, 2, and 7 Mbit/s, which
are common ADSL speeds in Italy.

B. Average download speed distribution

We calculated the average download speed distribution in
the goodset, and we compared the average with the one
provided by Speedtest.net [6] and Youtube [19]. We do not
show the variance because that makes little sense, for results

3To estimate RTT we use the “short HTTP transaction” method only,
because, with certain versions of Neubot, “time to connect” mistakenly takes
DNS resolution into account.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

P
e

rc
e

n
ta

g
e

Download speed (Mbit/s)

Aggregate download speed distribution

Fig. 3. Aggregate download speed distribution.

collected from different connections with different access
speeds.

We compare the goodset average with Speedtest.net’s [6]
average download speed for Italy. In particular, we pick the
average that excludes universities and companies. This is
reasonable because we removed very high-speed clients from
the goodset and universities and companies often enjoy high-
speed connectivity. With respect to Youtube Video Speed
History [19], we use the average for Turin rather than the
average for Italy because the goodset contains clients “not too
far” from Turin, due to the 100 ms RTT restriction.

The results are shown in table I.

C. Single-agent download speed distribution

In this subsection we comment on the distribution of the
download speed of a Neubot agent we have selected.

The selected agent’s tests consistently fall within the good-
set. It has performed 1383 tests and the RTT latency falls
84% of the time within 100 ms. Moreover, it appears the be
attached to a 7 Mbit/s ADSL connection. Indeed, a simple
whois lookup shows that the IP addresses employed by
such agent belong to an Internet Service Provider whose top
offer features 7 Mbit/s downstream. Furthermore, the agent’s
download speed is always lower than 7 Mbit/s.

The diagram in Fig. 4 shows the distribution of the down-
load speeds measured by the selected agent. Note that we
extracted the results of this agent from the database, given
that each agent is identified by a random UUID. But, since
results are also saved locally, in principle the owner of the
selected agent could have done the same analysis, accessing
the local database and using custom scripts, or, possibly via
the Neubot agent’s web interface.

Note that most of the results in Fig. 4 are distributed in
proximity of 7 Mbit/s, but there are significant spikes near
4 Mbit/s and 1 Mbit/s too (two other common downstream
speeds for ADSL in Italy). We are currently investigating
the causes of the low speed spikes, and checking whether
performing longer tests would yield more stable results.

Source Download speed (Mbit/s)
Neubot 4.58
Speedtest.net 4.68
YouTube 3.03

TABLE I
AVERAGE RESULTS OF NEUBOT COMPARED WITH AVERAGE RESULTS OF
SPEEDTEST.NET IN ITALY AND YOUTUBE VIDEO DOWNLOAD HISTORY

FOR TURIN.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7

P
e

rc
e

n
ta

g
e

Download speed (Mbit/s)

Single-agent download speed distribution

Fig. 4. Single-agent download speed distribution.

V. RELATED WORK

Most of the literature devoted to network neutrality focuses
on testing only one specific kind of disruption. For example,
Diffprobe tries to infer whether there is protocol-dependent
shaping [20]. Worth mentioning also is: (i) Weaver, Sommer,
and Paxson’s paper, that provides a rich set of heuristics to
detect spoofed RST segments and identify, with a certain
degree of confidence, the generating device [21]; (ii) the
Glasnost project, that provides a user-friendly Java applet that
performs a BitTorrent-versus-random-data test trying to detect
whether the ISP blocks BitTorrent traffic [7]; (iii) Zhang,
Mao, and Zhang’s paper, that studies the amount of traffic
differentiation in the backbone, employing a protocol-aware
traceroute-like tool [22].

Like Neubot, NANO [23] and Grenouille [24] deploy more
general approaches that are able to quantify a broad range of
network neutrality violations. NANO (Network Access Neu-
trality Observatory) employs passive measurements. The client
continuously monitors user-generated traffic, and periodically
sends throughput, round-trip-time, and other general perfor-
mance metrics to the server, as well as ancillary information
including the state of the hosting computer, its geographic
location, the browser, and the operating system. Interestingly,
the server relies on stratification to cluster the clients in
strata where the difference in performance depends only on
the fact that different ISPs have employed different policies.
Grenouille has an architecture similar to Neubot, but a slightly
different goal: to measure ISP backbone congestion. Every

30 minutes, the client connects to a server standing near the
edge of the ISP network, to avoid traversing (many) other
ISPs networks. This way, the FTP upload, FTP download,
and ping tests are not (much) biased by other ISPs, and
hence it is possible to evaluate the average quality of service.
To avoid overloading the servers, each client displaces tests
in time by a random amount of seconds. Tests results are
reported to a central server, unless the client finds that the
user has consumed too many network resources during the
test. The central server analyzes the results, producing daily
and monthly, global and per-city charts.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented the Neubot architecture for
distributed network neutrality measurements. In comparison
with the other known approaches, the value of Neubot lies
in its ability to permanently monitor the end-user Internet
connection instead of performing discrete probes. Such results,
made publicly available, will allow a systematic analysis of
Internet services together with a deeper understanding of
network neutrality based on real, per-host, network measure-
ments. In addition, as far as we know, the ability to perform
distributed test will give birth to the first P2P overlay for active
network measurements.

In this early stage of Neubot we implemented a broadband
speed test and we collected a total of 448317 tests from
1115 unique agents in the first three months since the first
public release. The purpose of this initial phase was to
validate the architecture robustness and the effectiveness of
the transmission test, using a “testbed” transmission protocol
like HTTP. So, we compared the results with other, well
known, online sources, such as Speedtest.net [6], and YouTube
Video Download History [19]. The preliminary analysis of the
collected data set shows that the average download speed is
comparable with what other services report, provided that we
make reasonable assumptions to single out tests performed by
ADSL connections that were not too far away from Neubot
test server.

We have also described ongoing efforts to enhance the
implementation, by easing the integration of diverse transmis-
sion tests that target other protocols. These efforts will help
estimate differential treatments. The enhancements include
a stricter protocol model, support for marshaling and un-
marshaling test results, using both JSON/XML and SQL, and
helpers for the web user interface.

The current implementation of Neubot will be extended
to allow for distributed measurements with the inclusion of
a client-server test to detect BitTorrent discrimination. From
then on, we plan to focus our research on the analysis of the
collected data with particular attention to the relation between
the measurements of the Internet Service Provider and the
geographic location of the Neubot agent that performed the
tests.

ACKNOWLEDGMENT

We would like to thank Prof. Jean-Claude Guédon and Dr.
Federico Morando for their support and for making sugges-
tions to improve the readability of this paper.

REFERENCES

[1] J. Crowcroft, “Net neutrality: the technical side of the debate: a white
paper,” ACM SIGCOMM Computer Communication Review, vol. 37,
no. 1, pp. 49–56, 2007.

[2] S. Jordan, “Some traffic management practices are unreasonable,” in
Computer Communications and Networks, 2009. ICCCN 2009. Proceed-
ings of 18th Internatonal Conference on. IEEE, 2009, pp. 1–6.

[3] R. Ma, D. Chiu, J. Lui, V. Misra, and D. Rubenstein, “On cooper-
ative settlement between content, transit and eyeball internet service
providers,” in Proceedings of the 2008 ACM CoNEXT Conference.
ACM, 2008, pp. 1–12.

[4] J. De Martin and A. Glorioso, “The Neubot project: A collaborative
approach to measuring internet neutrality,” in Technology and Society,
2008. ISTAS 2008. IEEE International Symposium on. IEEE, 2008, pp.
1–4.

[5] Neubot, the network neutrality bot. [Online]. Available:
http://www.neubot.org/

[6] Speedtest.net - The Global Broadband Speed Test. [Online]. Available:
http://speedtest.net/

[7] M. Dischinger, A. Mislove, A. Haeberlen, and K. Gummadi, “Detecting
bittorrent blocking,” in Proceedings of the 8th ACM SIGCOMM confer-
ence on Internet measurement. ACM, 2008, pp. 3–8.

[8] S. Basso, A. Servetti, and J. De Martin, “Rationale, Design, and
Implementation of the Network Neutrality Bot.” [Online]. Available:
http://www.neubot.org/neubotfiles/aica2010-neubot-paper.pdf

[9] FrontPage - py2exe.org. [Online]. Available: http://www.py2exe.org/
[10] jQuery: The Write Less, Do More, JavaScript Library. [Online].

Available: http://jquery.com/
[11] PyGtk: GTK+ for Python. [Online]. Available: http://www.pygtk.org/
[12] PyCrypto – The Python Cryptography Toolkit. [Online]. Available:

http://www.dlitz.net/software/pycrypto/
[13] 17.3. ssl – SSL wrapper for socket objects. [Online]. Available:

http://docs.python.org/release/2.6.6/library/ssl.html
[14] Twisted Matrix Labs – Building the engine of your internet. [Online].

Available: http://twistedmatrix.com/trac/
[15] BitTorrent / open source. [Online]. Available:

http://www.bittorrent.com/opensource
[16] Simple, fast, extensible JSON encoder/decoder for Python. [Online].

Available: http://pypi.python.org/pypi/simplejson/
[17] B. Tierney, “TCP tuning guide for distributed application on wide area

networks,” USENIX & SAGE Login, vol. 26, no. 1, pp. 33–39, 2001.
[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “RFC2616: Hypertext Transfer Protocol–HTTP/1.1,”
RFC Editor United States, 1999.

[19] Youtube Video Speed History. [Online]. Available:
http://www.youtube.com/my speed

[20] P. Kanuparthy and C. Dovrolis, “Diffprobe: detecting ISP service
discrimination,” in INFOCOM, 2010 Proceedings IEEE. IEEE, 2010,
pp. 1–9.

[21] N. Weaver, R. Sommer, and V. Paxson, “Detecting forged TCP reset
packets,” in In Proc. of NDSS. Citeseer, 2009.

[22] Y. Zhang, Z. Mao, and M. Zhang, “Detecting traffic differentiation
in backbone ISPs with NetPolice,” in Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference. ACM,
2009, pp. 103–115.

[23] M. Tariq, M. Motiwala, N. Feamster, and M. Ammar, “Detecting
network neutrality violations with causal inference,” in Proceedings of
the 5th international conference on Emerging networking experiments
and technologies. ACM, 2009, pp. 289–300.

[24] Grenouille.com - la météo du net depuis 2000. [Online]. Available:
http://www.grenouille.com/

