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Abstract

Users typically subscribe to an Internet access service on the ba-
sis of a specific download speed, but the actual service may differ.
Several projects are active collecting Internet access performance
measurements on a large scale at the end user location. However,
less attention has been devoted to analyzing such data and to in-
form users on the received services. This paper presents MiND,
a cluster-based methodology to analyze the characteristics of pe-
riodic Internet measurements collected at the end user location.
MiND allows to discover (i) groups of users with a similar Inter-
net access behavior and (ii) the (few) users with somehow anoma-
lous service. User measurements over time have been modeled
through histograms and then analyzed through a new two-level
clustering strategy. MiND has been evaluated on real data collected
by Neubot, an open source tool, voluntary installed by users, that
periodically collects Internet measurements. Experimental results
show that the majority of users can be grouped into homogeneous
and cohesive clusters according to the Internet access service that
they receive in practice, while a few users receiving anomalous ser-
vices are correctly identified as outliers. Both users and ISPs can
benefit from such information: users can constantly monitor the
ISP offered service, whereas ISPs can quickly identify anomalous
behaviors in their offered services and act accordingly.
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1. Introduction

Currently the vast majority of people use the Internet service
for a wide range of everyday activities. Internet access is obtained
by signing a contract between the subscriber (i.e., the final user)
and an Internet service providers (ISP). Each subscription is linked5

to a maximum theoretical download speed, which sometimes can-
not be achieved due to many factors (e.g., technical issues, service
delivery optimization, business rules). Thus, the received service,
in particular the download speed experienced in practice, may dif-
fer from the advertised value, and neither the users nor the ISP10

might easily detect such fact.
Different projects have been developed to monitor the Inter-

net access performance on a large scale by frequently measuring
the download speed at the end user location. Open source tools,
such as NDT (NDT, 2016) and Neubot (Nexa Center, 2016), are15

voluntarily installed on user computers and they can provide ba-
sic information, e.g., the received download speed in the last few
minutes, to the users. Furthermore, the collected data (partially
anonymized) are also stored in publicly-available repositories for
further inspection. An interesting but relatively unexplored re-20

search issue is how to analyze the large volume of collected mea-
surements over time to verify whether the service received by the
users is coherent with the one of other users with the same sub-
scription or if there are anomalies. The latter information is, in
general, useful for both users and ISPs. Users might be informed25

of the disservice which might be otherwise unnoticed or difficult to
detect, and ISP might be alerted so that they can discover poten-
tially unexpected network behavior.

In this paper we propose a novel data analytics methodology,
named MiND (Mining Neubot Data), aiming at analyzing the sta-30

tistical distribution of active measurements of Internet access down-
load speed to address two research questions: (i) Statistical behav-
iors of the Internet access performance received at user locations

9
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are sufficiently similar to be clustered in groups? (ii) It is possible
to detect some anomalous patterns in the Internet access perfor-35

mance that deserve to be investigated in-depth to understand their
root causes?

To address the previous questions, we employed an exploratory
analytics technique, i.e., cluster analysis. This analysis method
identifies groups of objects that share similar properties. Since40

it does not require previous knowledge of data (i.e., class labels,
which in our case are anomalous services and services coherent
with the one of other users with the same subscription), it has been
widely exploited in many application domains, such as web page
content (Chehreghani et al., 2009), social networks (van Dam & van de Velden,45

2015), medical data (Combes & Azema, 2013; Cerquitelli et al.,
2016), network data (Baralis et al., 2013).

In our context, MiND analyzes the statistical distribution of
the download speed measurements over time (through a frequency
histogram) collected at the user locations to group Internet users50

into homogeneous and cohesive groups according to the broadband
access service that they really experience. In case of users with a
regular access service, most of the download speed measurements
are close to their maximum download speed and there are few or
no occurrences of speed values below that threshold. Moreover,55

it is normal that the measured speed occasionally vary (i.e., few
measurements are much lower than that the maximum download
speed). However, when the distribution of the download speed
measurements is anomalous over time, it may be a symptom of
the fact that the ISP might not be able to provide the expected60

service with good reliability. From the point of view of the single
user, if the user experiences a download speed similar to the one
of a group of other users in a given considered collection we may
assume that users receive a service coherent with the subscribed
one. Otherwise, we assume that an anomalous behavior has been65

detected. In the latter case, both the user and the ISP should be
informed: users might be interested to know that in practice they
receive a service different from the subscribed one, whereas ISP
might have the opportunity to investigate further the unexpected
network behavior and eventually fix it.70

The main novelties of MiND are fourfold. (i) Data transformation. To

10
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highlight the relevance of Internet access in terms of bandwidth, collected
measurements (download speed measurements repeated over time) have been
represented through frequency histograms. Specifically, Internet bandwidths
are divided into intervals (or bins) defined by a domain expert. Each his-75

togram reports, for each bin, the total number of measurements performed by
a single user. Thus, the histogram allows to compactly model all the measure-
ments performed by the same user over time. (ii) Two-level cluster-
ing strategy. To correctly identify groups of users according to the
download speed that they really experienced and to correctly iden-80

tify anomalous patterns, a two-level clustering strategy has been
proposed, based on the DBSCAN (M. Ester et al., 1996) and K-
means (J. A. Hartigan & M. A. Wong, 1979) algorithms. The pro-
posed strategy allows dealing with Internet access measurements
including both noise and outlier data, as well as to group users into85

well-separated clusters. (iii) A novel distance measure has been proposed
to drive the DBSCAN algorithm into correctly identifying noise and outliers.
(iv) Performance of all users are analyzed together. Differently
from previous works, MiND analyzes the statistical distribution of
Internet access performance experienced by all users together to90

correctly model a comprehensive view of the network.
The proposed methodology has been thoroughly evaluated on real and

heterogeneous datasets including data belonging to a single ISP in different
geographical areas and data collected in different time intervals. Data have
been collected by means of Neubot (Nexa Center, 2016), an open source soft-95

ware research project supported by the Nexa Center for Internet and Society
of the Politecnico di Torino in Italy. The datasets used in this paper and the
source code for the cluster analysis are published online in a public reposi-
tory on Github (Servetti, A., 2016) together with a short description of the
work. Experimental results demonstrate that MiND correctly identifies ho-100

mogeneous and cohesive groups of users receiving a similar download speed.
The MiND findings allow enhancing user awareness of the Internet
access service that they really receive and spotting anomalous net-
work behavior that may require further analysis and investigation.

The paper is organized as follows. Section 2 summarizes the related work105

in the area concerning both Internet access measurement collection and their
analysis. The proposed mining framework is described in Section 3 illus-
trating in details the algorithmic choices and how to optimally tune their
parameters. A thoroughly experimental evaluation is presented in Section 4

11
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showing the effectiveness and robustness of the proposed algorithms. Sec-110

tion 5 discusses the MiND findings and their possible exploitation
from both the academic and managerial perspectives. Finally, Sec-
tion 6 draws conclusions and discusses further developments.

2. Related work

Measurement of Internet access network speed is a popular field of investi-115

gation for multiple parties ranging from academia to governments (C. Duffy Marsan,
2013). On one hand, Internet regulators are actively supporting large scale
network measurements to foster up to date and widespread monitoring of
Internet access services in order to be able to compare broadband providers
and to frame better policies to regulate them. On the other hand, users are120

becoming eager and eager to know how their Internet connection behaves
both with respect to other ISPs and, inside the same ISP, compared to other
users. For instance, in the case of Ookla Speed Wave (Ookla, 2016), group of
users can compare results against each other and compete for achievements
such as highest download speed and lowest latency badges.125

Most of the available platforms for broadband measurements are targeted
on collecting and analyzing aggregate information for interested organiza-
tions. Such platforms are based on spot measurements of the different access
networks that ISPs offer as broadband connection to Internet users. Thus, a
relatively small number of probe points on each provider are used by these130

platforms to make assumption on the ISP quality of service (e.g., average
speed, percentage of satisfied users, etc.). These implementations are gener-
ally based on highly reliable measurements that are performed by dedicated
hardware that must be delivered to the user and installed on his network.
This class of platforms include: the RIPE Atlas project (RIPE, 2016), that135

was started in late 2010 and that now counts 6,926 installed probes; the
SamKnows project (SamKnows, 2016), that since 2008 is collaborating with
governments and industries to benchmark broadband performance in several
countries (e.g., the September 2013 campaign counted data from 6,398 sub-
scribers (Federal Communication Commission, 2014)); the Bismark project,140

that at the end of 2014 counts 420 devices deployed, largely in developing
countries (Project BISmark, 2016).

Other platforms are oriented to informing users, as opposed to institu-
tions and governments, about their specific Internet access service. Thus, to
easily reach every potentially interested user, they are based on software ap-145
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plications that can be installed on different operating systems or used directly
from the web browser. These implementations can characterize each single
user connection with a very deep level of detail. In this scenario it is possi-
ble to distinguish between two schemes: user activated probes and periodic
probes. The first scheme includes Ookla Speedtest.net and NDT where each150

test must be run directly by the user. Even if they are very popular (Ookla
counts 5 million measurements each day and NDT 3 million measurements
per month), both suffer from a relatively small number of measurements per
user that clearly limits the ability to statistically characterize the behavior
of the user’s connection. For example, NDT completely lacks the concept of155

“user” because results are identified only by the client IP address which may
be reused by several users over time. The second scheme includes Neubot,
that provides a smaller number of measurements, nearly 1 million per month,
but that can periodically perform the measurements multiple times per day
for the same user, thus allowing to sample and characterize each connection160

on a per user basis. For every installation, Neubot stores an unique user
identifier that can be used to match each measurement with that user even
if other parameters change, most notably the IP address that is dynamically
assigned, and frequently modified, by the ISP.

Up to now, Neubot is the only active service that collects and publishes165

periodic measurements of users’ Internet access services. Therefore, it is
currently the only one that allows to characterize and compare the profile of
the Internet connection of different users. However, an in-depth analysis is
needed to transform such large volume of data into knowledge and ultimately,
actions.170

Many research efforts have been devoted to analyzing network traffic
data through unsupervised data mining techniques, because they do not re-
quire previous knowledge of the application domain (e.g., a labeled traffic
trace (Katris & Daskalaki, 2015)). Authors in (Apiletti et al., 2009) pro-
posed to discover correlations at different abstraction levels among network175

data packet headers, while authors in (Apiletti et al., 2013) proposed a cloud-
based service to extract frequent correlations on passive traffic measure-
ment collections. Clustering algorithms represent a widely-used exploratory
technique to identify groups of similar network flows. They have been ex-
ploited to address different and interesting network traffic issues such as180

deriving node topological information (Baralis et al., 2013), automatically
identifying classes of traffic (Apiletti et al., 2016), unveiling YouTube CDN
changes (Giordano et al., 2015), predicting the throughput on a network (Maia et al.,

13
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2010), characterizing P2P traffic (Chung et al., 2010), grouping network flows
by application type (Carmo et al., 2008), identifying users’ role based on185

their behaviors through the analysis of social features (Zhu et al., 2011), and
supporting network management (Carvalho et al., 2016). This work instead
proposes a two-level clustering strategy jointly with a new distance measure
to analyze Internet access performance of different ISP users with the aim
to discover groups of users according to the Internet access that they really190

received.

3. The MiND methodology

MiND aims at analyzing Internet access measurements to identify groups
of users that receive a similar Internet access service. This system relies on in-
novative techniques to deal with data characterized by an inherent sparseness195

with the final aim to correctly identify cohesive and well-separated groups
of users. Specifically, MiND identifies group of users by analyzing the sta-
tistical Internet access behavior of DSL subscribers as reported by Neubot
on the basis of periodic measurements, not just on the basis of a single net-
work measurement as done by similar projects such as NDT. The proposed200

methodology aims to answer to the following questions: (i) are there similar
statistical behaviors of users that are sufficiently similar to be clustered in a
single group? (ii) from the point of view of the single user, is the behavior
of a given user similar to the one of a group of other users in the considered
set of data?205

The possibility to identify such clusters is interesting for both the final
users and the network operator itself. In fact, it is reasonable to assume that
users belonging to the same cluster have a similar experience to many others
in the group, therefore they behave “normally”. On the contrary, other users
that cannot be easily classified into a cluster might experience issues with210

their Internet access, therefore this can be interesting to know for both the
user and the operator. The users might be informed that their behavior is
somehow anomalous (instead of assuming that, maybe, it is the same for all
the others), and the operator can use such information to check if unexpected
network behaviors are taking place for the users.215

Figure 1 shows the main components of the MiND architecture as well
as interactions between such components. The first activity of MiND is the
data collection phase, which is performed through Neubot. Neubot data are
typically characterized by an inherent sparseness and variable distribution

14
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over time because Neubot is installed as a background service but the user220

can decide to deactivate it at some times, for instance for privacy reasons.
Moreover, depending on the situation, users may not be always connected to
the Internet, so the periodicity of the measurements may strongly vary. The
variability in data distribution increases with data volume, thus increasing
the complexity of mining such data.225

When dealing with inherently sparse distributions, it is recommended to
apply a suitable data transformation prior to data analysis (T. Pang-Ning et al.,
2006). Thus, an ad-hoc data transformation models the data on a different
space, from which hidden and more interesting knowledge can be extracted.
MiND exploits a frequency histogram technique to compactly model the230

Internet access service received by each user. Then, the actual service ex-
perienced is modeled through a histogram for each user. Given this new
set of data, a clustering analysis can discover groups of users with similar
Internet accesses over the time. To this aim we propose a two-level clus-
tering strategy (as shown in Fig. 1) that first deals with noise and outlier235

data and then groups users into well-separated and homogeneous clusters.
The proposed strategy is based on the DBSCAN (M. Ester et al., 1996) and
K-means (J. A. Hartigan & M. A. Wong, 1979) algorithms. Furthermore, a
novel distance measure has been proposed so that the DBSCAN algorithm
can correctly identify noise and outliers in the set of user-histograms. Fi-240

Figure 1: The MiND components

15
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nally, MiND also includes a knowledge validation component (see Fig. 1)
to evaluate the quality of the identified groups of users. This component is
based on quality indexes (e.g., SSE (T. Pang-Ning et al., 2006) and Silhou-
ette (Rousseeuw, 1987)) that can evaluate the goodness of the identified clus-
ters. Algorithmic details of the MiND methodology are discussed245

in Appendix A.

3.1. Data collection and preprocessing

Internet access measurements for the MiND framework are collected by
the Neubot project, then they are retrieved from the Neubot Repository
data storage and preprocessed to both extract only the data of interest for250

the analysis and add some additional field useful for the clustering process.

3.1.1. The Neubot Internet access measurements

Neubot is an open-source tool voluntarily installed by users on
their computer to periodically monitor the characteristics of their
Internet connection. More details of the Neubot collected infor-255

mation can be found in Appendix A.1. Neubot runs as a back-
ground service, periodically performing a set of transmission tests
between the user’s computer and a Neubot Server hosted in the M-
LAB (M-lab, 2016) network. In this study we analyze the measure-
ments of the speedtest test that measures the download bandwidth260

in terms of the application-level throughput (Kurose, 2013).
The speedtest test of the Neubot project collects a variety of fea-

tures for each measurement performed by each final user. Among
them, MiND exploits the Unique User Identifier (uuid) and the
measured download speed (speed)1. We enrich these two features265

with the Autonomous System Number (asnum) and the IP address
subnet (subnet) from which the measurement was performed to
correctly group measurements performed at the same user loca-
tion. Pairs of uuid and subnet, denoted as the user in the rest of
this study, are used as the unique identifier of each set of measure-270

ments. Table 1 shows an example of the selected features.

1The measured download speed only inform on the quality of the Internet connection
service experienced by the user at “that given moment” and it can not represent a measure
of the user’s Internet access service speed.
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uuid subnet asnum speed (bytes/s)
2b37de0c-5f49-4446-8b8f-3b2dad14fb61 50.128.0.0/9 7922 3588959
72740cc4-b665-475c-acad-29e3f176af91 79.10.0.0/15 3269 489583

Table 1: An example of the data extracted from the Neubot speedtest database.

3.1.2. Data transformation

The data transformation component of MiND aims at pre-processing
the data to effectively support the subsequent data analysis by extracting
interesting knowledge items.275

Since in the Neubot architecture each transmission test constitute a sin-
gle record in the database, the monitored measurements for each user are
spread over many records. As a consequence, it is unfeasible to direct apply
clustering algorithms to such data because a user’s Internet access characteri-
zation is spread over many records. Therefore, an ad-hoc data transformation280

process is needed to model the data in a different space to support more inter-
esting analyses. Specifically, MiND tailors a given dataset storing collected
measurements (e.g., download speed measurements for many users over the
time) to a new space model based on user-histograms. To highlight the rele-
vance of Internet access in terms of bandwidth, MiND represents all collected285

measurements (download speed measurements repeated over time) belonging
to a single user through a frequency histogram. Thus, each user-histogram
compactly represents the distribution of all measurements belonging to a
single user. To create the histograms, first an expert of Internet access tech-
nology decides a suitable division of the typical available access bandwidth290

into intervals (bins), as detailed in Section 4.2. Then, each user-histogram
is built to report, for each bin, the normalized number of times that a given
download speed, measured for a given user, falls into the bin. Given this new
set of data (one record for each user), a cluster analysis can be performed
to discover groups of users with similar Internet access. Thus, homogeneous295

user groups will contain similar histograms, i.e., with similar shapes in terms
of position of peaks and low values.

Figure 2 shows the effect of the data transformation process for two users.
The results of each download speed measurement over time are shown on the
left plots while the corresponding two histograms are shown on the right300

plots. Measures are collected over a period of one year with an average of
about three measurements per day. The histogram bin width is 0.5 Mb/s.

17



 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
 The final publication is available at Elsevier via: http://dx.doi.org/10.1016/j.eswa.2016.08.025

3.2. Two-level clustering strategy

MiND adopts a two-level clustering approach to analyze Internet access
behavior of users over a long time span. First, noise and outliers are identified305

in the complete dataset to exclude users that received an anomalous Internet
access service from the subsequent step. Then, a suitable clustering algorithm
is applied to identify groups of cohesive users with homogeneous statistical
behavior.

Figure 2 shows an example of the expected normal behavior for two users310

of different ISPs with different ADSL speed. The plots on the left represent
the download speed measured by Neubot in each single test over a time span
of one year. Users are expected to experience a download speed close to
the maximum DSL connection bandwidth they are paying for. As reported
in Figure 2 the connection speed has an upper speed limit because all the315

measurements are below a threshold, that is close to 7 Mb/s for the user
shown in the top part and close to 5 Mb/s for the user shown in the bottom
part. The two plots in the right part of Figure 2 are the histograms that
represent the distribution of the download speed measurements over bins
of 0.5 Mb/s. The upper limit is also visible in the histograms, but here320

we also notice that the distribution peak is very close to that limit and
that as we move away from that value the probability of measuring that
speed decreases. Given this typical download speed distributions, which is
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Figure 2: Download speed measured with Neubot speedtest over a year (left) and speed
histogram (right) for two users of different ISPs.
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in accordance with (Paxson, 1994), homogeneous users that belong to the
same ISP should aggregate their download speed measurements around few325

values according to the available broadband plans of the ISP (e.g., 5, 10, 25,
50, Mb/s). On the contrary, users with an anomalous Internet access would
experience a different distribution of the download speed measurements, i.e.
a higher variability of their connection speed over a wider range of speed
values (below the upper limit).330

MiND adopts the DBSCAN algorithm (Ester et al., 1996) for the first
level of analysis and the K-means algorithm (Juang & Rabiner, 1990) for the
second one. More details about both DBSCAN and K-means algo-
rithms can be found in Appendix A.2. A key operation to perform
a good analysis is to effectively measure the similarity among data objects.335

Similarity is usually measured according to a notion of distance in a mea-
surement space describing the object features, as detailed in the next section.

3.2.1. Distance measure

MiND integrates (i) a new distance measure, named F1-Max, able to
identify outlier and noisy user profiles, and (ii) the Manhattan distance to cor-340

rectly discover groups of homogeneous user profiles based on their histograms.
Traditional distance measures, such as Euclidean, Overlap and Jaccard dis-
tances (Ackermann et al., 2010), are not suited to compute the distance be-
tween two user-histograms due to the following two issues. (i) User-histogram
bins (dimensions) are not orthogonal, (ii) peak values in the user-histogram345

introduce a distortion in the calculation of the distances. The relevance of the
above issues increases when dealing with noisy data (i.e., datasets including
some anomalous user-histograms) as real datasets. These issues have been
addressed by our newly defined F1-Max aimed at measuring the distance
between two user-histograms.350

The F1-Max distance measure is a cross-bin distance measure that con-
tains additional terms that also compare non-corresponding bins within a
given “bin distance”. The main idea is to reduce the sensitivity of the al-
gorithm to the position of bin boundaries so that users with small shifts of
the measured connection speed, e.g. one bin shift, may still be considered355

homogeneous. On the contrary, users with larger shifts will still appear as
distant points. Thus, F1-Max overcomes both the non-orthogonality issue
and the distortion introduced by peak values.

For the non-orthogonality issue, let us consider an n-dimensional hyper-
space where dimensions are ordered and not all independent of each other.360

19
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In this hyper-space all dimensions will be orthogonal to all dimensions except
to the closer ones. For example, if the ordered dimensions are: x1, x2, x3,
x4, x5, x6, x7, then dimension x3 will be non-orthogonal to dimension x2

and x4 (case (i)) and to dimension x1 and x5 (case (ii)) while x3 will be
orthogonal (independent) to all the other dimensions (case (iii)), thus the365

latter are not considered. To remove the non-orthogonal relationship between
two dimensions (cases (i) and (ii)) the corresponding distance can be properly
weighted. Specifically, we use w1 and w2 < w1 to weight the distances related
to case (i) and case (ii) respectively.

To minimize the distortion in the calculation of the distances due to the370

peak values, histograms have been preprocessed before distance computation.
The top six values of each histogram have been normalized with the following
criterion: the highest value has been replaced by the average of the highest
value of each histogram, the second highest value by the average of the second
highest value of each histogram, and so on. Since the contribution to the375

distance tends to zero by considering lower top values of each histogram, we
neglect such contributions.

The F1-Max measure between two histograms X = (x1, . . . , xn) and Y =
(y1, . . . , yn) is computed as follows:

F1-Max(x, y) =
n

∑

i=1

dist(xi, yi)

+ w1

n
∑

i=1

1

2|k1|

∑

j∈k1

(dist(xi, yj) + dist(xj , yi))

+ w2

n
∑

i=1

1

2|k2|

∑

j∈k2

(dist(xi, yj) + dist(xj , yi)) (1)

where k1 = {i− 1, i+ 1}, k2 = {i− 2, i+ 2} and dist(xa, yb) is defined as:

dist(xa, yb) = |xa − yb| ·max(xa, yb) (2)

where the distance between two user histogram bins (xa, yb) is based on380

the Manhattan distance emphasizing the differences between the bins with a
weight equal to the maximum between the two.

Unlike the Euclidean distance, the Manhattan distance considers as equal
all the diagonals of all the rectangles with the same perimeter. Thus, it

20



 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
 The final publication is available at Elsevier via: http://dx.doi.org/10.1016/j.eswa.2016.08.025

computes the distance between two objects measured along axes at right385

angles, which is equal to the distance that would be traveled to get from one
data point to the other if a grid-like path is followed (T. Pang-Ning et al.,
2006). The traditional Manhattan distance between two user-histograms is
the sum of the differences of their corresponding bin values (i.e., normalized
number of times that a given download speed range is measured by the user).390

The Manhattan distance formula between two user-histogramsX = (x1, . . . , xn)
and Y = (y1, . . . , yn) is:

Manhattan(X, Y ) =

n
∑

i=1

|xi − yj| (3)

where n is the number of histogram bins, and xi and yi are the values of the
i-th bin, at user-histograms X and Y respectively.

The first level clustering ofMiND exploits the DBSCAN algorithm (Ester et al.,
1996) jointly with the F1-Max distance to correctly identify outlier data. For
the second level clustering the K-means (Juang & Rabiner, 1990) is exploited395

using the Manhattan distance. As discussed in Section 4.3 this configuration
is able to correctly identify anomalous user-histograms as well as cohesive
and well-separated groups of user-histograms.

3.3. Knowledge validation

MiND integrated two objective measures (i.e., Silhouette and400

SSE) to evaluate the quality of the clustering results and to perform
a sensitivity analysis on the parameters used as input for the clus-
tering algorithms. Specifically the Silhouette index (Rousseeuw,
1987) measures both intra-cluster cohesion and inter-cluster sep-
aration by evaluating the appropriateness of the assignment of405

a data object to a cluster rather than to another. The higher
the index, the better the clustering. The Sum of Squared Er-
ror (SSE) (T. Pang-Ning et al., 2006), instead, evaluates the clus-
ter cohesion for center-based clustering techniques, i.e., K-means.
The smaller the index, the better the quality of discovered clusters.410

More details about the equations of both the Silhouette and the
SSE are reported in Appendix A.3.
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4. Experimental results

To validate the effectiveness of the MiND framework, we addressed four
issues: (i) MiND performance (Section 4.3), (ii) time stability analysis (Sec-415

tion 4.4), (iii) MiND sensitivity and robustness (Section 4.5) to parameter
setting, (iv) MiND robustness to distance measure selection (Section 4.5.3).

A large set of experiments have been performed on two real datasets
(Section 4.1) collected by Neubot. Before the application of the proposed
two-level clustering strategy, MiND employs a data transformation as dis-420

cussed in Section 4.2.
The open source RapidMiner toolkit (Rapid Miner, 2016) has been used

for the cluster analysis. The new distance measure has been developed in
Java and it is used by the clustering algorithms available in RapidMiner.

Both the datasets and the RapidMiner code used in this section are avail-425

able on Github (Servetti, A., 2016).

4.1. Datasets

We considered two real datasets collected by means of Neubot. We re-
call that, among the network measurement platforms, Neubot is the only
tool that allows to aggregate the collected measurements by user and then430

build a histogram of its Internet access speed. This section describes the
main characteristics of the considered datasets and the corresponding data
transformation applied on them before performing the two-level clustering
strategy.

Table 2 describes the two Neubot datasets used to evaluate MiND in435

terms of time-span, different number of users and measurements. Each
dataset includes a subset of the Neubot users in the same Internet Ser-
vice Provider (ISP), as identified by the Autonomous System Number (AS-
NUM) to which the user IP address belongs. D1 is the dataset including
measurements performed by users of the largest Italian ISP, Telecom Italia440

S.p.a. (AS3269). The D2 dataset includes measurements performed by users
of Comcast Cable Communications Inc. in the United States (AS7922).
The latter is the ISP with the largest number of measurements collected by
Neubot.

4.2. Data transformation445

The data transformation component of MiND represents, by means of a
frequency histogram, all collected measurements (download speed measure-
ments repeated over time) related to a single user. Thus, each user-histogram
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Table 2: Datasets collected by Neubot from July 2012 to June 2014. Statistics include
lower quartile (lq), median (med), and upper quartile (uq) measured in Mb/s.

ID Provider Users Measurements Statistics (lq, med, uq)

D1 Telecom Italia 3659 206884 2.72 5.64 8.00
D2 Comcast 1568 778052 5.91 15.47 23.75

Table 3: Non uniform bin widths for download speed histograms. Download speed upper
boundary of each bin (ds) is measured in Mb/s.

bin # 1 2 3 4 5 6 7 8 9 10 11
ds 1 2 3 4 5 6 7.1 8.5 10.3 12.6 15.6

bin # 12 13 14 15 16 17 18 19 20
ds 19.4 24.0 30.0 37.6 47.3 59.6 75.2 95.0 120.1

compactly describes the statistical behavior of the download speed measure-
ments recorded by the same user in a given subnet.450

The data transformation component discards histograms with less than
50 measurements, because they are not deemed statistically significant. For
the D1 dataset, the download speed values are included in a very short range
(i.e., 0–20 Mb/s), thus we set a uniform bin widths of 1 Mbit/s.

For the Comcast dataset, instead, the variability of the download speed
values is wider (i.e., 0–120 Mb/s), thus using a uniform distribution for the
histogram bin widths is not appropriate. Therefore, we use bin widths that
follows a logarithmic scale so that the higher the measured speed the larger
the bin width. The logarithmic function is defined in Eq. (4), where the
download speed (ds) is expressed in Mb/s.

bin(ds) =

{

⌈ds⌉ ds ≤ 6Mb/s
⌈

ln
[

(ds− 1.81)4.19
]⌉

ds > 6Mb/s
(4)

The corresponding bin boundaries are those listed in Table 3. Figure 3(a)455

shows the histogram representing the statistical distribution of all the down-
load speed measurements in D2. Most of the probes report speeds between
5 and 60 Mb/s that represent the vast majority of the Comcast users.

4.3. MiND performance

In this section we evaluated the MiND performance to show the effec-460

tiveness of the proposed framework in (i) discovering a set of clusters that
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correctly represent users whose connection is homogeneous in terms of sta-
tistical behavior and (ii) identifying also users that do not fit well in those
clusters because their connection behaves differently from the others. To
this aim, a two-level clustering strategy has been proposed. The first-level465

clustering addresses the issue (ii) (Section 4.3.1), while the second-level the
issue (i) (Section 4.3.2). The Comcast trace (D2 in Table 2) is discussed as
a representative dataset.

4.3.1. First-level clustering

In MiND the DBSCAN clustering algorithm, coupled with the new dis-470

tance measure (F1-Max) defined in Section 3.2.1, is first used to identify noise
and user-histogram outliers. The DBSCAN parameters Eps andMinPts are
set to 0.25 and 4 respectively, as the result of the sensitivity analysis detailed
in Section 4.5.

The DBSCAN algorithm identifies as outliers/noise a set of 37 user-475

histograms (out of the 796 histograms of the users with more than 50 mea-
surements) characterized by an anomalous download speed pattern. Fig-
ure 3(b) shows some user-histograms in the outlier cluster and Fig. 3(c)
shows some user-histograms in a non-noise cluster.

We observe that user-histograms considered as outliers in Fig. 3(b) have480

multiple peaks (bi/tri-modal distribution) or present a “plateau” with many
small peaks very close together that resemble a quasi-uniform distribution.
These are two characteristics that may identify anomalous Internet access
services or the presence of a source of noise in the Neubot measurements.

On the contrary, users with a regular access service have most of the485

download speed measurements close to their maximum download speed and
few or no occurrences of speeds above that threshold. In fact, it is not possible
that all the probes result in the maximum speed value, but hopefully they
should report a speed not too lower than that value. The more the distance
from that value, i.e., the provider advertised speed, the less the quality of490

the service offered. At the same time, the measured speed should not vary
too much otherwise it may be a symptom of an anomalous connection that
is not able to provide the expected service with the required reliability.

Figure 4 shows a 3D representation of all user-histogram in the outlier
cluster and all user-histogram in three homogeneous clusters (the ones with495

the highest number of user-histograms) identified by DBSCAN. Figure 4
visualizes the dispersion of the user-histograms inside a cluster using a special
representation. Specifically, each user-histogram is shown as a row of the
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(c) User-histograms identified as non-noise

Figure 3: Histograms from the Comcast dataset.

image where the frequency value in each bin is represented by a grayscale,
white corresponds to 0 and black to 1. A visual analysis of the cluster500

representations shows that the dark regions (i.e., the user-histogram peaks)
of the top left noise cluster are, as expected, widely dispersed among the
bins. On the contrary, the representations of the other three clusters indicate
a concentration of the dark regions in few bins. Thus, as documented in the
following sections, the MiND framework appears to be able to correctly505

identify anomalous Internet access services.
A similar methodology has also been applied to the Telecom Italia dataset

(D1). The DBSCAN identified as outliers noise a set of 79 user histograms
characterized by an anomalous download speed pattern (out of the 909 his-
tograms of the users with more than 30 measurements). The DBSCAN510
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Figure 4: Download speed histogram colormaps for the clusters identified by DBSCAN in
the Comcast dataset. Each row of the colormap shows a user download speed histogram
where the bin frequency value is represented with a grayscale. The top left plot represents
the users’ histograms assigned to the noise cluster.

parameters Eps and MinPts were almost identical to the ones used in the
Comcast dataset analysis.

4.3.2. Second-level clustering

The second-level clustering in MiND is performed in the dataset after
outliers have been identified and removed. This step exploits the K-means515

algorithm and the Manhattan distance measure (see Section 4.5.2 for pa-
rameter settings). Figure 5 (left) shows the three clusters identified by the
algorithm on the Comcast dataset. Specifically, both the average histogram
and the corresponding size are reported for each cluster. The histogram of
the first cluster presents three peaks in the range between 0 and 20 Mb/s,520

but gradually decreases with the increase of the download speed value. The
other two clusters are very concentrated around bin 13 (19.4–24 Mb/s) and
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Figure 5: Second-level clustering on Comcast (US) dataset. Average of user-histograms
(left) and boxplot (right) per cluster.

bin 17 (47.3–59.6 Mb/s) that may correspond to DSL services of 25 and 50
Mb/s. Note, however, that the first cluster is the one that, alone, includes
almost half of the analyzed records (311 out of 759). These results are in line525

with Internet access services provided by Comcast and on average subscribed
by customers.

Figure 5 (right) shows the download speed distribution for each cluster in
Fig. 5 (left). All box plots are compact showing that the speed distribution
variance of each cluster is limited, and so the compactness of the cluster.530

Figure 6 (left) shows both the average histogram and the correspond-
ing size for each cluster identified on the Italian dataset2 (D1 in Table 2).
These results are also interesting because they exhibit a strong relation with
the services offered by the Telecom Italia ISP. The typical speeds for this
provider are in fact 7 Mbit/s and 4 Mbit/s (though this is not advertised,535

but appears to be limited by the ISP when the SNR of the physical channel is
not very good). For the higher speed cluster (peak around 10 Mbit/s), there
is currently no offer around 10 Mbit/s, but there is one around 20 Mbit/s.
Therefore 10 Mbit/s might stem from the impossibility to take full advantage
of the network physical speed for a different reason (e.g., network congestion,540

other concurrent download activity performed by the clients).
Figure 6 (right) shows the speed distribution for each cluster in Figure 6

(left). All the three box plots have the last quartile values close to typical
speeds for the Italian provider (e.g., 4 Mbit/s, 7 Mbit/s). Furthermore, all

2Telecom Italia is the former monopolist that build the network physical infrastructure
in Italy.
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Figure 6: Second-level clustering on Telecom Italia dataset. Average of user-histograms
(left) and boxplot (right) per cluster.

box plots are very compact, as the inter-quartile range (IQR) values are very545

close to the median ones, proving that the speed distribution variance of each
cluster is very limited, thus the compactness of the cluster. These results
support the effectiveness of MiND in discovering compact and interesting
groups of users based on the Internet access services that they really received.

4.4. Time stability analysis550

We performed a time stability analysis in order to further assess the use-
fulness of MiND and its effectiveness in discovering interesting clusters of
users. Specifically, we compared the results obtained using datasets cover-
ing different time periods related to the same provider. The Telecom Italia
dataset (D1) is discussed as representative example. To this aim, we com-555

pared results from the first time frame (from Jul 1, 2012 to Jun 30, 2013,
named D1-A) of the D1 dataset with the one collected from Jan 1, 2014 to
Jun 30, 2014, named D1-B.

We may assume that any difference is due to some variations in the ser-
vices offered to the users. Figure 7(a) shows both the average histogram and560

the corresponding size for each cluster identified on D1-A and D1-B respec-
tively. Reported results show that the behaviors are similar but it is possible
to notice a slight improvement in the download speed for the year 2014 (D1-
B). This is also visible in Figure 7(b) and quantified in Table 4. Specifically,
Figure 7(b) reports the speed distribution for each cluster in Figure 7(a) to565

compare the two sets of discovered clusters in D1-A and D1-B. Table 4 shows
the percentage improvement, in term of received bandwidth, for each cluster
discovered in D1-A with respect to the ones in D1-B.
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Table 4: Improvement for Telecom Italia download speed from 2012–13 to 2014, measured
at significant values of the three clusters.

Cluster 1 Cluster 2 Cluster 3
First quartile +8% +9% +10%
Median +13% +8% +5%
Third quartile -3% +8% +4%

On average, all three user groups feature a connection better in 2014
(D1-B) than the one obtained in 2012-2013 (D1-A). As shown in Table 4570

all the index positions of the box plot (the first quartile, the median, and
the third quartile) undergo a substantial increase (percentage of increased
bandwidth) with the exception of the third quartile in cluster 1. The increase
of the median value ranges from 5% for users in the higher speed cluster
to 13% for those in the lower speed cluster. The largest group of users575

(cluster 2) has a nearly constant increase for all index positions. Therefore,
it seems reasonable to conclude that, over time, the download speed service,
as measured by Neubot has, in general, improved from 2012-2013 (D1-A) to
2014 (D1-B).

4.5. Algorithm sensitivity and robustness580

We analyzed the robustness of the clustering quality to parameter set-
tings. MiND parameter setting addressed the following issues. (i) Reduce
data fragmentation. Since clusters should summarize Internet access behav-
ior, we avoid the generation of a large number of clusters including few users.
(ii) Exhibit good silhouette values, showing that they include subsets of cor-585

related users. (iii) Avoid many unclustered users, by limiting the number of
users labeled as outliers.

To address the above issues, a large set of experiments have been run
to find the optimal input parameter settings, using, when available, tools to
optimize algorithm performance (e.g., K-dist graph (Ankerst et al., 1999) for590

the DBSCAN algorithm, as shown in Appendix A.2) or objective mea-
sures to evaluate the discovered clustering structures as discussed in Section
3.2.1. The latter has been exploited to find the best value for the K parame-
ter of the K-means algorithm (see Section 4.5.2). The Comcast trace (D2 in
Table 2) is discussed as representative dataset since it includes a large variety595

of services and users.
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Figure 7: Clustering of Telecom Italia data collected in the time period Jul 1, 2012 – Jun
30, 2013 (a)(top), and Jan 1, 2014 – Jun 30, 2014 (a)(bottom), and boxplot comparison
(b) showing the improvement for all groups.

4.5.1. Setting DBSCAN parameters: K-dist graph

The DBSCAN algorithm exploits two input parameters: MinPts and
Eps. For DBSCAN parameter setting, we rely on the k-dist graph (T. Pang-Ning et al.,
2006) plotting. It shows, for each data object, the distance to its kth nearest600

neighbor. The F1-Max measure is used for distance computation. On the
x-axis data objects are sorted by the distance to the kth nearest neighbor,
while on the y-axis distances to the kth nearest neighbor are reported.

When the distance with the kth nearest neighbor is small, the object will
be labeled as core or border point and included in a cluster. Instead, when605

the distance is high the object will be labeled as outlier and noise point and
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Figure 8: k-dist graph for the Comcast dataset using F1-Max measure with weighting
parameter w1 = 0.3.

not included in a cluster.
Figure 8 shows the k-dist graph for the Comcast dataset. k corresponds

to the MinPts parameter, while the y-axis contains possible values of the
Eps parameter. Since MinPts indicates the minimum number of points in610

a cluster, we set it at 4 (and 8) and we analyzed the impact of Eps values
on the clustering result.

By intercepting the curve in Fig. 8 at a given Eps value on the y-axis,
the corresponding px value on the x-axis partitions data objects into the
following two subsets. Points placed on the left side of px are labeled as core615

points, and those on the right side of px as noise/outlier or border points.
Usually, the Eps value is selected where a rather sharp change (T. Pang-Ning et al.,

2006) appears in the curve. For our cluster analysis, we intercept the curve
at the sharp slope change, i.e., Eps in the range [0.225 – 0.325].

4.5.2. Setting the K-means parameter620

The K-means algorithm requires as input parameter the number of clus-
ters (K), which is in general very difficult to define, given the wide range in
which it may vary.

To address this issue we analyzed two traditional quality indexes (i.e.,
Sum of Squared Error and Silhouette). The smaller the SSE, the better the625
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quality of discovered clusters. However, as the number of cluster increases,
the SSE decreases because smaller and more cohesive clusters are identified.
In contrast, in many real applications the actual number of interesting clus-
ters is usually small. Thus, we need to identify a good trade-off between the
number of clusters and their significance.630

To measure both intra-cluster cohesion and inter-cluster separation we
exploited the Silhouette index to evaluate the appropriateness of the assign-
ment of a user histogram to a cluster rather than to another. Negative
Silhouette values represent wrong user histogram assignments, while positive
values good user assignments. Given a clustering result, its Silhouette value635

is the average weighted Silhouette value on all user histograms assigned to
each cluster. The higher the Silhouette, the better the quality of discovered
clusters.

Many runs of the K-means algorithm have been carried out with varying
values of K, and for each run, the cluster set is evaluated by computing both640

the SSE and the Silhouette. Figures 10(a) and 10(b) show the SSE values
and the average Silhouette values, respectively, computed on different clusters
sets by varying the K parameter. By analyzing the SSE index, good values
for K are in the range from 3 to 4, by considering the average Silhouette,
the best value for K is 3. Thus, in MiND we set K = 3 for the second level645

clustering algorithm based on K-means.

4.5.3. The distance measure selection

In MiND two distance measures have been exploited to correctly iden-
tify interesting groups of user histograms. Here, we analyzed the robustness
of the clustering quality achieved by MiND to select the distance measure.650

Since MiND exploits a two-level clustering strategy, we analyzed the impact
of the distance measure on each level separately. MiND uses the DBSCAN
algorithm as a first level clustering. Thus, we first analyzed the robustness of
the clustering quality yielded by DBSCAN by varying the distance measure
(F1-Max, Manhattan). To evaluate the cluster quality we computed the655

average silhouette by considering all user histograms (without noise) clus-
tered by DBSCAN (group #1), and the corresponding average silhouette
by considering all user histograms labeled as outliers (group #2). The bet-
ter clustering quality corresponds to a high silhouette value for group #1
and low silhouette value for group #2. Table 5 reports both the average660

silhouette for groups #1 and #2 by also varying the weight w1 in the F1-
Max measure. Different values for Eps parameter in the range [0.225 – 0.325]
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Figure 9: Average silhouette for DBSCAN clustering with different distance measures
and varying Eps range. MinPts is fixed to 4. Distance F1-Maxis evaluated with three
different values of the weighting factor (w1).

(identified through the K-dist plot, see Section 4.5.1) have been considered.
F1-Max yielded a better cluster quality than the Manhattan distance mea-
sure. Among the considered values for w1 and Eps, the best trade-off between665

the maximization of the average silhouette (group #1) and the minimization
of the average silhouette (group #2) is yielded for w1 = 0.3 and Eps = 0.25.
Thus, for the first level clustering MiND exploits the DBSCAN algorithm
with Eps = 0.25, MinPts = 4, and the F1-Max as the distance measure. A
visual comparison of average silhouette for group #1 is also shown in Fig. 9.670

Table 5: Average silhouette values for DBSCAN clustering with different distance measures
and varying Eps range, MinPts is fixed to 4. Distance F1-Maxis evaluated with three
different values of the weighting factor (w1).

Epsilon
w1 0.225 0.250 0.275 0.300 0.325

F1Max 0.2
0.497 0.425 0.276 0.260 0.180 w/o noise (group #1)
-0.554 -0.552 -0.543 -0.594 -0.381 noise only (group #2)

F1Max 0.3
0.505 0.521 0.520 0.519 0.355 w/o noise (group #1)
-0.562 -0.531 -0.524 -0.542 -0.518 noise only (group #2)

F1Max 0.4
0.167 0.451 0.431 0.426 0.433 w/o noise (group #1)
-0.497 -0.506 -0.540 -0.521 -0.501 noise only (group #2)

Manhattan
-0.203 -0.285 -0.335 -0.246 -0.246 w/o noise (group #1)
-0.606 -0.588 -0.509 -0.437 -0.437 noise only (group #2)

We also analyzed the robustness of the clustering quality yielded by K-
means as a second-level algorithm in MiND by varying the distance measure
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Figure 10: Comparison of SSE (a) and average Silhouette (b) for the Manhattan or the
F1-Max distance measure by varying the K parameter for K-means clustering.

(F1-Max, Manhattan). Figure 10(a) shows the SSE by varying the distance
measure. Different values for the K parameter of K-means have been consid-
ered. The Manhattan measure here yielded a better clustering quality than675

F1-Max, thus in MiND we exploited it to drive the second-level clustering.
Figure 10(b) shows the average silhouette.

4.6. Additional case studies

To further validate the MiND methodology, we report the re-
sults obtained on two new datasets, collected in a more recent time680

period (June 2014 – May 2016), for other major ISPs: MCI/Verizon
in the US (AS701), and Wind in Italy (AS1267). Table 6 shows
the key metrics of the two additional datasets, similarly to the ones
already shown for D1 and D2. MiND identifies (i) few users receiv-
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Figure 11: Average of user-histograms on additional datasets: MCI/Verizon, US (left) and
Wind, Italy (right), for the period June 2014 – May 2016.

Table 6: Datasets collected by Neubot from June 2014 to May 2016. Statistics include
lower quartile (lq), median (med), and upper quartile (uq) measured in Mb/s.

ID Provider Users Measurements Statistics (lq, med, uq)

D3 MCI/Verizon 775 670839 6.68 19.35 41.45
D4 Wind 1119 198817 1.44 3.29 5.06

ing anomalous services, i.e., 50 (12%) for D3 and 26 (6.6%) for685

D4 and (ii) three groups of users receiving a usual service, which
are shown in Figure 11. Note that, despite the change of the time
period and the ISPs, good clustering performance can be achieved
similarly to the case of D1 and D2, with well separated download
speed peaks for the different clusters.690

5. Discussion

This section aims to discuss the previous MiND findings and how
they can be exploited from both the academic and the managerial
perspective. MiND analyzes the download speed measurements
over time of all users for a given ISP. MiND discovers (i) groups695

of users with a similar and usual Internet access behavior and (ii)
a few users with somehow anomalous service. To this aim, the
statistical distribution of the download speed measurements (i.e.,
user-histogram) is analyzed for each user.

MiND has been thoroughly validated on two main case stud-700

ies (Comcast and Telecom Italia) and summary results have been
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presented for other two (MCI/Verizon and Wind). A set of 37 user-
histograms out of the 796 histograms (i.e., 4.65%) and a set of 79
user histograms out of the 909 histograms (8.7%) have been iden-
tified as anomalous behaviors on the Comcast and Telecom Italia705

datasets respectively. These user-histograms (see Fig. 3) have dif-
ferent peaks that sometimes resemble a quasi-uniform distribution.
Instead, the set of users whose connection is homogeneous in terms
of statistical behavior identified by MiND on both datasets are in
line with Internet access services offered by both providers and on710

average subscribed by customers. Thus, we can conclude that these
users receive an Internet access service in line with the subscribed
one.

Differently from other widespread projects for Internet access
performance monitoring such as NDT (NDT, 2016), MiND an-715

alyzes the statistical distribution of Internet access performance
experienced by tracking unique users over time. Moreover, the
whole set of measurement is fed into MiND so that it can have a
comprehensive view of the network. This new analytics perspec-
tive allows to get different types of insights with respect to the720

other works. In fact, the MiND findings can provide feedback to
both users and ISPs. The large majority of other projects, instead,
typically aim at either providing a direct, immediate, but limited
feedback to the user on the basis of a single measurement (e.g.,
Ookla Speedtest.net), or at collecting large sets of data but with-725

out information that can match the data with each single user (e.g.,
NDT only collects IP addresses). Therefore, such large sets can
only be useful to ISPs for a general network performance overview
but they cannot provide feedback to the ISP about the experience
of single users.730

From the managerial perspective, MiND findings could be ex-
ploited to inform both users and ISPs about the correspondence
between the subscribed services and the received/provided ones.
In practice, the MiND analysis can be run periodically by both the
ISP or the users (e.g., using the publicly available Neubot data),735

so that both parties can be informed about the presence of anoma-
lous behaviors or, conversely, reassured about the absence of any
anomaly. From the user side, users receiving a disservice have a
tool that can help them to objectively demonstrate the issues they
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are experiencing. From the ISP side, the tool can be used to isolate740

unexpected network behaviors for further analysis and investiga-
tion, as well as potentially preventing user complaints. In fact, in
presence of repeated anomalous behaviors over time, an ISP could
schedule ad-hoc maintenance sessions to improve the reliability of
the provided services. The ISP could also use the tool to show,745

with an objective third-party instrument, that a large share (if not
all) of their users are receiving a service in line with the one they
subscribed for.

From the academic perspective, MiND findings demonstrate the
ability of the proposed methodology to correctly analyze large col-750

lection of measurements distributed over time and automatically
discover similar statistical behavior together with anomalous ones.
There is a large variety of events that can be monitored over time,
with a large set of admissible values (as in the case of the domain of
the download speed values) thus resulting in datasets with inher-755

ent sparseness and variable distribution which are typically difficult
to handle. We believe that the MiND methodology can be easily
ported also to different application domains (e.g., smart city appli-
cations, medical applications) where the collected data have prop-
erties similar to the ones of the datasets considered in this study.760

For instance, consider a smart urban environment where sensor
networks are deployed to continuously monitor environmental pa-
rameters. In general, each sensor measures a single phenomenon
(e.g., humidity, temperature, traffic) over time and performs a mea-
sure every roughly few minutes. The collected measurements may765

have large domains. A possible relation between this work and the
example of the smart urban environment could be to map each sen-
sor onto a Neubot probe, then analyze the collected data as done
in this work, i.e., modeling the statistical distribution of collected
measurements as histograms and applying the same techniques.770

In this application scenario MiND could be exploited to identify
groups of sensors with similar statistical behavior together with a
few sensor with anomalous behaviors which can potentially indicate
anomalous situations in a given part of the urban environment.

Finally, there is still room for improvement of theMiND method-775

ology. In fact, one of its main drawbacks is that it requires a mini-
mum number of measurements to model the statistical distribution
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of the received Internet access service through user-histogram. We
are currently investigating novel strategies to model users with a
limited number of measurements.780

6. Conclusions

This work presented MiND, an innovative cluster-based system aimed
at automatic and efficient characterization of groups of users with a similar
Internet access behavior. To characterize Internet access parameters, pub-
licly available download speed measurements provided by the Neubot plat-785

form have been exploited and analyzed in-depth. The rationale behind the
MiND framework is presented and discussed in details investigating which
data transformation, clustering algorithms, and distance measure provide the
best performance for the specific characteristics of the collected data. We be-
lieve that the promising results open a set of new possibilities for Internet790

users to enhance their awareness of the Internet access service they really
receive. Using MiND, for instance, it would be possible to automatically
perform activities such as alerting users about unusual behaviors or automati-
cally spot behaviors that may be interesting for further analysis and investiga-
tion. Future extensions of this work include the development of cloud-based795

services for the analysis of Internet access parameters and the exploitation
of different frequency methods (e.g., TF-IDF method (T. Pang-Ning et al.,
2006) ) to model user-histograms. Furthermore, the exploitation of the
MiND methodology in different application domains can also be
investigated as exemplified in the discussion section.800
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Ackermann, M. R., Blömer, J., & Sohler, C. (2010). Clustering for metric805

and nonmetric distance measures. ACM Transactions on Algorithms , 6 ,
59.

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). Optics:
Ordering points to identify the clustering structure. In Proceedings of ACM

38



 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
 The final publication is available at Elsevier via: http://dx.doi.org/10.1016/j.eswa.2016.08.025

SIGMOD International Conference on Management of Data (pp. 49–60).810

New York, NY, USA: ACM.

Apiletti, D., Baralis, E., Cerquitelli, T., Chiusano, S., & Grimaudo, L. (2013).
SeaRum: A cloud-based service for association rule mining. In 11th IEEE
International Symposium on Parallel and Distributed Processing with Ap-
plications, ISPA-13 (pp. 1283–1290).815

Apiletti, D., Baralis, E., Cerquitelli, T., & D’Elia, V. (2009). Characterizing
network traffic by means of the NetMine framework. Computer Networks ,
53 , 774–789.

Apiletti, D., Baralis, E., Cerquitelli, T., Garza, P., & Venturini, L. (2016).
SaFe-NeC: a Scalable and Flexible system for Network data Characteri-820

zation. In IEEE/IFIP Network Operations and Management Symposium,
Istanbul, Turkey, 25-29 APRIL 2016 .

Baralis, E., Bianco, A., Cerquitelli, T., Chiaraviglio, L., & Mellia, M. (2013).
NetCluster: A clustering-based framework to analyze internet passive mea-
surements data. Computer Networks , 57 , 3300–3315.825

C. Duffy Marsan (2013). IAB plenary explores challenges of network perfor-
mance measurements. IETF Journal , 8 , 7–8.

Carmo, M. F. F. d., Maia, J. E. B., Siqueira, G. et al. (2008). An inter-
net traffic classification methodology based on statistical discriminators.
In Network Operations and Management Symposium, 2008. NOMS 2008.830

IEEE (pp. 907–910). IEEE.

Carvalho, L. F., Jr., S. B., de Souza Mendes, L., & Jr., M. L. P. (2016).
Unsupervised learning clustering and self-organized agents applied to help
network management. Expert Systems with Applications , 54 , 29 – 47.

Cerquitelli, T., Chiusano, S., & Xiao, X. (2016). Exploiting clustering al-835

gorithms in a multiple-level fashion: A comparative study in the medical
care scenario. Expert Syst. Appl., 55 , 297–312.

Chehreghani, M. H., Abolhassani, H., & Chehreghani, M. H. (2009). Density
link-based methods for clustering web pages. Decision Support Systems ,
47 , 374–382.840

39



 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
 The final publication is available at Elsevier via: http://dx.doi.org/10.1016/j.eswa.2016.08.025

Chung, J. Y., Park, B., Won, Y. J., Strassner, J., & Hong, J. W. (2010). An
effective similarity metric for application traffic classification. In Network
Operations and Management Symposium (NOMS), 2010 IEEE (pp. 286–
292). IEEE.

Combes, C., & Azema, J. (2013). Clustering using principal component845

analysis applied to autonomy-disability of elderly people. Decision Support
Systems , 55 , 578–586.

van Dam, J.-W., & van de Velden, M. (2015). Online profiling and clustering
of Facebook users. Decision Support Systems , 70 , 60–72.

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based850

algorithm for discovering clusters in large spatial databases with noise. In
Knowledge Discovery and Data Mining (KDD) (pp. 226–231).

Federal Communication Commission (2014). Measuring Broadband America
Report — Technical Appendix. http://data.fcc.gov/download/measuring-
broadband-america/2014/Technical-Appendix-fixed-2014.pdf Last access855

March 2016.

Giordano, D., Traverso, S., Grimaudo, L., Mellia, M., Baralis, E., Ton-
gaonkar, A., & Saha, S. (2015). YouLighter: An unsupervised methodology
to unveil Youtube CDN changes. CoRR, abs/1503.05426 .

J. A. Hartigan, & M. A. Wong (1979). Algorithm as 136: A k-means cluster-860

ing algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28 , 100–108.

Juang, B.-H., & Rabiner, L. (1990). The segmental k-means algorithm for
estimating parameters of hidden markov models. IEEE Transactions on
Acoustics, Speech and Signal Processing , 38 , 1639–1641.865

Katris, C., & Daskalaki, S. (2015). Comparing forecasting approaches for
internet traffic. Expert Systems with Applications , 42 , 8172 – 8183.

Kurose, J. F. (2013). Computer networking: a top-down approach. Pearson
Education.

M. Ester, H.-P. Kriegel, J. Sander, & X. Xu (1996). A density-based al-870

gorithm for discovering clusters in large spatial databases with noise. In

40



 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
 The final publication is available at Elsevier via: http://dx.doi.org/10.1016/j.eswa.2016.08.025

Proc. of 2nd International Conference on Knowledge Discovery and Data
Mining (pp. 226–231).

M-lab (2016). M-lab. https://console.developers.google.com/storage/m-lab/
Last access March 2016.875

Maia, J. E. B. et al. (2010). Network traffic prediction using pca and k-means.
In Network Operations and Management Symposium (NOMS), 2010 IEEE
(pp. 938–941). IEEE.

NDT (2016). Network Diagnostic Test.
http://www.measurementlab.net/tools/ndt Last access March 2016.880

Nexa Center (2016). Neubot Project. http://neubot.org Last access March
2016.

Ookla (2016). Ookla Speedtest. http://www.speedtest.net/ Last access
March 2016.

Paxson, V. (1994). Empirically derived analytic models of wide-area TCP885

connections. IEEE/ACM Transactions on Networking , 2 , 316–336.

Project BISmark (2016). Network Dashboard. http://networkdashboard.org
Last access March 2016.

Rapid Miner (2016). The Rapid Miner project for machine learning.
http://rapid-i.com/ Last Access March 2016.890

RIPE (2016). RIPE network coordination centre. https://atlas.ripe.net Last
access March 2016.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. Computational and Applied Mathemat-
ics , (pp. 53–65).895

SamKnows (2016). SamKnows. https://www.samknows.com/ Last access
March 2016.

Servetti, A. (2016). MIND Repository. https://github.com/servetti-
polito/mind-compnet-15 Last access March 2016.

41



 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
 The final publication is available at Elsevier via: http://dx.doi.org/10.1016/j.eswa.2016.08.025

T. Pang-Ning, M. Steinbach, & V. Kumar (2006). Introduction to Data900

Mining . Addison-Wesley.

Zhu, T., Wang, B., Wu, B., & Zhu, C. (2011). Role defining using behavior-
based clustering in telecommunication network. Expert Systems with Ap-
plications , 38 , 3902 – 3908.

42



 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
 The final publication is available at Elsevier via: http://dx.doi.org/10.1016/j.eswa.2016.08.025

Supplementary material

Discovering users with similar Internet access

performance through cluster analysis

Tania Cerquitelli∗, Antonio Servetti, Enrico Masala

Control and Computer Engineering Department, Politecnico di Torino, Corso Duca degli

Abruzzi, 24 – 10129 Torino, Italy.

Appendix A. Algorithmic details of the MiND methodology

Here we discuss the algorithmic details of theMiNDmethodology. Specif-
ically, first the main details of the data collection and preprocessing com-
ponents are presented, followed by the algorithmic details of the two-level
clustering strategy. Finally, the formal definition of the quality indices inte-5

grated in MiND to evaluate the objective quality of the extracted knowledge
are presented.

A.1. Data collection and preprocessing

As presented in Section 3.1 in the paper the MiND data collection and
preprocessing component includes the data collection phase performed through10

Neubot, the data storage and the preprocessing phase to prepare data for the
subsequent analytics phase. Here we provide details about the Neubot In-
ternet access measurements and the feature selection step, which is needed
to extract from the Neubot dataset the data of interest for the analysis.

Neubot Internet access measurements. The Neubot project is based15

on an open-source client application, named the Neubot Agent, that vol-
unteer end-users may install on their computer to periodically monitor the
characteristics of their Internet connection. As a background service, the
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Agent automatically performs a set of transmission tests between the user’s
computer and a Neubot Server hosted in the M-LAB (M-lab, 2016) net-20

work. Once a day, measurements are retrieved from each Server by the
Neubot Repository where the data is published on the web, freely available
for download (Nexa Center, 2016). Currently, Neubot features an installed
base of more than 1,000 users spread all over the world in more than 100
countries, with a predominant share in North America and Europe. Each25

user is carrying out, on average, 20 measurements per day (for more details
see (Masala et al., 2014)).

Among the four Neubot tests currently available (speedtest, bittorrent,
dash and raw) we selected to analyze the measurements of the speedtest test
that uses an HTTP connection to estimate the round-trip time, the down-30

load and the upload bandwidth available at the Agent when communicating
with the nearest Neubot Test Server. Specifically, the measured download
bandwidth corresponds to the application-level throughput (Kurose, 2013),
and it is calculated at the receiver by dividing the amount of received bytes
over the elapsed time.35

Clearly the measured download bandwidth only informs on the quality
of the Internet connection service experienced by the user at “that given
moment” and it can not represent a measure of the user’s Internet access
service speed. There are, in fact, many confounding factors that may affect
the estimate of the download throughput, e.g., other connections heavily40

using/sharing the access link, bad quality of the WiFi network that could
have been used to connect to the Internet router, congestion in the back-
bone, etc. However, with Neubot, download throughput measurements are
repeated frequently for the same user and connection, so confounding factors
can be averaged over multiple sessions.45

Feature selection. The speedtest test of the Neubot project collects sev-
eral features for each measurement performed by each final user. We selected
a subset of features that includes the Unique User Identifier (uuid) and the
measured download speed (speed). The download speed value is the main
object of the analysis in this work whereas the uuid is necessary to group50

all the speed measurements of the same user. In addition, using the public
information available through the WHOIS protocol (Daigle, 2004), we add
two new features derived from the IP address associated with each measure-
ment: the Autonomous System Number (asnum) and the IP address subnet
(subnet) from which the measurement was performed. The asnum is used to55
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match the Neubot user to its ISP, whereas the subnet value allows to identify
different types of networks of the same ISP (e.g., office or home network,
wired or wireless network), that might have strongly different performance.
Thus, even inside the same ISP, the collected download speed measurements
may have different range of values for each pair of uuid and subnet. There-60

fore, this pair is used as the unique identifier of each set of measurements.

A.2. Two-level clustering strategy

As presented in Section 3.2 in the paper MiND adopts a two-level clus-
tering approach to analyze Internet access behavior of users over a long time
span. First, to identify users that received an anomalous Internet access ser-65

vice the DBSCAN algorithm is exploited. Then, to identify groups of cohesive
users with homogeneous statistical behavior in terms of experienced Internet
access performance the K-means algorithm (Juang & Rabiner, 1990) is used.
Details of these two clustering algorithms are reported below. MiND exploits
the DBSCAN algorithm (Ester et al., 1996) jointly with the F1-Max distance70

to correctly identify outlier users, while the Manhattan distance is used with
the K-means (Juang & Rabiner, 1990).

The DBSCAN algorithm (Ester et al., 1996) exploits the notion of “dense”
neighborhood to define clusters. Density is defined as the number of objects
which are in a particular area of the measurement space. DBSCAN explores75

the space by growing existing clusters as long as the number of objects in their
neighborhood is above a given threshold. More specifically, DBSCAN relies
on two input parameters, named Eps andMinPts, to define a density thresh-
old in the data space. A dense region in the data space is a n-dimensional
sphere with radius Eps and containing at least MinPts objects.80

The DBSCAN algorithm iterates over the data objects in the collection by
analyzing their neighborhood. It classifies objects as being (i) in the interior
of a dense region (a core point), (ii) on the edge of a dense region (a border
point), or (iii) in a sparsely occupied region (a noise or outlier point). Any
two core points that are close enough (within a distance Eps of one another)85

are put in the same cluster. Any border point close enough to a core point
is put in the same cluster as the core point. Outlier points (i.e., points far
from any core point) are isolated.

DBSCAN can discover arbitrarily shaped clusters and identify outliers as
objects in a low density area in the data space. The effectiveness of DBSCAN90

is affected by the selection of the Eps and MinPts values. However, setting
appropriate values for the Eps and minPts parameters is a rather difficult
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task (Ankerst et al., 1999). To address this issue we rely on the k-dist plot
methodology as discussed in Section 4.5.1.

The K-means clustering algorithm (Juang & Rabiner, 1990) attempts to95

find k clusters, represented by their centroids. The algorithm is iterative
and starts from randomly selected centroids whose positions is progressively
adjusted until convergence. The K-means algorithm is effective for spherical-
shaped clusters. Nevertheless, the random initialization of centroids may
cause issues since a single execution of the procedure may not guarantee the100

homogeneity of the discovered clusters. K-means is also sensitive to out-
liers, cluster size, densities of data points, non-globular shapes of clusters
and outliers. K-means also requires the a priori knowledge of the number
of clusters. Differently from other algorithms (e.g., hierarchical clustering),
K-means could be computationally faster and produce tighter clusters (es-105

pecially if clusters are globular). To overcome the problem of setting the
number of clusters, we analyzed the trend of the sum of squared error as
discussed in Section 4.5 in the paper.

A.3. Knowledge validation

As presented in Section 3.3 in the paper MiND integrated two objective110

measures (i.e., Silhouette and SSE) to evaluate the quality of the clustering
results as well as the sensitivity analysis of the algorithm parameter setting
on the discovered cluster quality.
Silhouette. To measure both intra-cluster cohesion and inter-cluster sepa-
ration the Silhouette index (Rousseeuw, 1987) evaluates the appropriateness115

of the assignment of a data object to a cluster rather than to another. The
silhouette value for a given user ui in a cluster C is computed as

s(ui) =
b(ui)− a(ui)

max{a(ui), b(ui)}
, s(ui) ∈ [−1, 1], (1)

where a(ui) is the average distance of user-histogram ui from all other user-
histograms in the cluster C, and b(ui) is the smallest of average distances
from its neighbor clusters. Given a cluster C, its silhouette value is the av-120

erage silhouette value on all users assigned to C. Negative silhouette values
represent wrong user-histogram placements, while positive silhouette values
represent good user-histogram assignments. Both the F1-Max and the Man-
hattan distance metrics have been used for silhouette evaluation.
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Sum of Squared Error (SSE). To evaluate the cluster cohesion for center-125

based clustering techniques, i.e., the K-means, MiND adopts the Sum of
Squared Error (SSE) (T. Pang-Ning et al., 2006). The adopted index is the
sum of the SSE of all user-histogram in the collection. Each value is computed
as the squared distance between the user-histogram and its closest centroid.
The smaller the index, the better the quality of discovered clusters.130
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